Articles: sars-cov-2.
-
An outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that started in Wuhan, China, at the end of 2019 has become a global pandemic. Both SARS-CoV-2 and SARS-CoV enter host cells via the angiotensin-converting enzyme 2 (ACE2) receptor, which is expressed in various human organs. We have reviewed previously published studies on SARS and recent studies on SARS-CoV-2 infection, named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), confirming that many other organs besides the lungs are vulnerable to the virus. ⋯ Restoring the balance between the RAS and ACE2/angiotensin-(1-7)/MAS may help attenuate organ injuries. SARS-CoV-2 enters lung cells via the ACE2 receptor. The cell-free and macrophage-phagocytosed virus can spread to other organs and infect ACE2-expressing cells at local sites, causing multi-organ injury.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global spread of coronavirus disease (COVID-19). Our understanding of the impact this virus has on the nervous system is limited. Our review aims to inform and improve decision-making among the physicians treating COVID-19 by presenting a systematic analysis of the neurological manifestations experienced within these patients. ⋯ While COVID-19 typically presents as a self-limiting respiratory disease, it has been reported in up to 20% of patients to progress to severe illness with multi-organ involvement. The neurological manifestations of COVID-19 are not uncommon, but our study found most resolve with treatment of the underlying infection. Although the timeliness of this review engages current challenges posed by the COVID-19 pandemic, readers must not ignore the limitations and biases intrinsic to an early investigation.
-
J. Korean Med. Sci. · Jul 2020
Case ReportsA Case of COVID-19 with Acute Myocardial Infarction and Cardiogenic Shock.
A 60-year-old male patient with coronavirus disease-2019 showed new onset ST-segment elevation in V1-V2 leads on electrocardiogram and cardiac enzyme elevation in intensive care unit. He had a history of type 2 diabetes mellitus, hypertension, and dyslipidemia. He was receiving mechanical ventilation and veno-venous extracorporeal membrane oxygenation treatment for severe hypoxia. ⋯ We performed primary percutaneous coronary intervention for acute myocardial infarction complicating cardiogenic shock under hemodynamic support. He expired on the 16th day of admission because of cardiogenic shock and multi-organ failure. Active surveillance and intensive treatment strategy are important for saving lives of COVID-19 patients with acute myocardial infarction.
-
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak is spreading worldwide. To date, no specific treatment has convincingly demonstrated its efficacy. Hydroxychloroquine and lopinavir/ritonavir have potential interest, but virological and clinical data are scarce, especially in critically ill patients. ⋯ In critically ill patients admitted for SARS-CoV-2-related pneumonia, no difference was found between hydroxychloroquine or lopinavir/ritonavir as compared to standard of care only on the proportion of patients who needed treatment escalation at day 28. Further randomized controlled trials are required to demonstrate whether these drugs may be useful in this context.