Articles: sars-cov-2.
-
Nasopharyngeal and oropharyngeal swab (NPS and OPS) collection is widely accepted as the preferred method for obtaining respiratory samples. However, it has certain disadvantages which may be overcome by gargling. The primary objective of this study was to assess agreement between gargle lavage and swab as an appropriate respiratory sample for the detection of SARS-CoV-2. The secondary objective was to assess the patient acceptability of the two sampling methods. ⋯ Our preliminary results show that the gargle lavage may be a viable alternative to swabs for sample collection for the detection of SARS-CoV-2. Adoption of gargle lavage for sample collection will have a significant impact as it will enable easy self-collection, relieve healthcare workers and also lead to substantial cost savings by reducing the need for swabs and personal protective equipment.
-
Expert Opin Drug Deliv · Jul 2020
EditorialCan 3D printing of oral drugs help fight the current COVID-19 pandemic (and similar crisis in the future)?
The ongoing COVID-19 crisis has highlighted the importance of a robust drug supply chain which can be quickly and flexibly ramped up to produce life-saving drug treatments. 3D printing (3DP) of oral solid dosage forms (OSDF) could be a viable part of the emergency drug production response to support vulnerable patients in rural regions and other isolated locations. In the context of the current pandemic, the suitability of different 3DP technologies will depend on the physicochemical properties, unit dose strength and BCS classification of the repurposed drug compounds currently being trialed for COVID-19. Furthermore, the deployment strategy should focus on simplifying dosage forms and formulations, scaling down the size and complexity of the printing systems and real-time quality assurance via process analytical technologies (PAT).
-
Coronavirus disease 2019 (COVID-19) was first identified in China in late 2019 and is caused by newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies had reported the stability of SARS-CoV-2 in cell culture media and deposited onto surfaces under a limited set of environmental conditions. Here, we broadly investigated the effects of relative humidity, temperature, and droplet size on the stability of SARS-CoV-2 in a simulated clinically relevant matrix dried on nonporous surfaces. ⋯ However, contact with contaminated surfaces may also play a significant role. In this context, understanding the factors contributing to SARS-CoV-2 persistence on surfaces will enable a more accurate estimation of the risk of contact transmission and inform mitigation strategies. To this end, we have developed a simple mathematical model that can be used to estimate virus decay on nonporous surfaces under a range of conditions and which may be utilized operationally to identify indoor environments in which the virus is most persistent.