Articles: sars-cov-2.
-
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has resulted in > 500,000 deaths worldwide, including > 125,000 deaths in the U. S. since its emergence in late December 2019 and June 2020. ⋯ Angiotensin converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 and other coronaviruses, is a transmembrane protein expressed by lung alveolar epithelial cells, enterocytes, and vascular endothelial cells, whose physiologic role is to induce the maturation of angiotensin I to generate angiotensin 1-7, a peptide hormone that controls vasoconstriction and blood pressure. In this review, we provide the general context of the molecular and cellular mechanisms of SARS-CoV-2 infection with a focus on endothelial cells, describe the vasculopathy and coagulopathy syndromes in patients with SARS-CoV-2, and outline current understanding of the underlying mechanistic aspects.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19) has resulted in a global health crisis. Prior to the arrival of this viral pandemic, the world was already plagued with a significant burden of cardiovascular disease. ⋯ The exact effects of COVID-19 on the cardiovascular system are not well determined, however lessons from prior viral epidemics suggest that such infections can trigger acute coronary syndromes, arrhythmias and heart failure via direct and indirect mechanisms. In this article, we aimed to discuss the effects and potential underlying mechanisms of COVID -19 as well as potential implications of treatments targeted against this virus on the cardiovascular system.
-
Since December 2019, countries around the world have been struggling with a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Case series have reported that people with obesity experience more severe coronavirus disease 2019 (COVID-19). During the COVID-19 pandemic, people have tended to gain weight because of environmental factors imposed by quarantine policies, such as decreased physical activity and increased consumption of unhealthy food. ⋯ It is also recommended that renin-angiotensin system blockers are not stopped during the COVID-19 pandemic because no definitive data about the harm or benefits of these agents have been reported. During the COVID-19 pandemic, social activities have been discouraged and exercise facilities have been closed. Under these restrictions, tailored lifestyle modifications such as home exercise training and cooking of healthy food are encouraged.
-
Mass critical care caused by the severe acute respiratory syndrome corona virus 2 pandemic poses an extreme challenge to hospitals. The primary goal of hospital disaster preparedness and response is to maintain conventional or contingency care for as long as possible. Crisis care must be delayed as long as possible by appropriate measures. ⋯ In order to adjust surge capacity, the reduction of planned, elective patient care is an adequate response. However, this involves numerous problems that must be solved with a sense of proportion. This paper summarises preparedness and response measures recommended to acute care hospitals.
-
The need for proven disease-specific treatments for the novel pandemic coronavirus SARS-CoV-2 necessitates a worldwide search for therapeutic options. Since the SARS-CoV-2 virus shares extensive homology with SARS-CoV and MERS-CoV, effective therapies for SARS-CoV and MERS-CoV may also have therapeutic potential for the current COVID-19 outbreak. To identify therapeutics that might be repositioned for treatment of the SARS-CoV-2 disease COVID-19, we strategically reviewed the literature to identify existing therapeutics with evidence of efficacy for the treatment of the three coronaviruses that cause severe respiratory illness (SARS-CoV, MERS-CoV, and SARS-CoV-2). ⋯ Tocilizumab and baricitinib appear to improve mortality by preventing a severe cytokine storm. Convalescent plasma and humanized monoclonal antibodies offer passive immunity and decreased recovery time. This review highlights potential therapeutic options that may be repurposed to treat COVID-19 and suggests opportunities for further research.