Articles: sars-cov-2.
-
Theor Biol Med Model · Jun 2020
Risk estimation of the SARS-CoV-2 acute respiratory disease outbreak outside China.
On December 31, 2019, the World Health Organization was alerted to the occurrence of cases of pneumonia in Wuhan, Hubei Province, China, that were caused by an unknown virus, which was later identified as a coronavirus and named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to estimate the reproductive number of SARS-CoV-2 in the Hubei Province and evaluate the risk of an acute respiratory coronavirus disease (COVID-19) outbreak outside China by using a mathematical model and stochastic simulations. ⋯ The reproductive number for SARS-CoV-2 transmission dynamics is significantly higher compared to that of the previous SARS epidemic in China. This implies that human-to-human transmission is a significant factor for contagion in Hubei Province. Results of the stochastic simulation emphasize the role of quarantine implementation, which is critical to prevent and control the SARS-CoV-2 outbreak outside China.
-
Comparative Study
ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy.
As the outbreak of coronavirus disease 2019 (COVID-19) progresses, prognostic markers for early identification of high-risk individuals are an urgent medical need. Italy has one of the highest numbers of SARS-CoV-2-related deaths and one of the highest mortality rates. Worldwide, a more severe course of COVID-19 is associated with older age, comorbidities, and male sex. ⋯ Exome and SNP-array data from a large Italian cohort were used to compare the rare-variants burden and polymorphisms frequency with Europeans and East Asians. Moreover, we looked into gene expression databases to check for sex-unbalanced expression. While we found no significant evidence that ACE2 is associated with disease severity/sex bias, TMPRSS2 levels and genetic variants proved to be possible candidate disease modulators, prompting for rapid experimental validations on large patient cohorts.
-
On March 11, 2020, the World Health Organization declared the worldwide spread of the infectious disease COVID-19, caused by a new strain of coronavirus, SARS-CoV-2, as a pandemic. Like in all other infectious diseases, the host immune system plays a key role in our defense against SARS-CoV-2 infection. However, viruses are able to evade the immune attack and proliferate and, in susceptible individuals, cause severe inflammatory response known as cytokine storm, particularly in the lungs. ⋯ Components of immune system, such as antibodies, can also be used to develop sensitive and specific diagnostic methods as well as novel therapeutic agents. In this review, we summarize our knowledge about how the host mounts immune responses to infection by SARS-CoV-2. We also describe the diagnostic methods being used for COVID-19 identification and summarize the current status of various therapeutic strategies, including vaccination, being considered for treatment of the disease.
-
Coronavirus disease 2019 (COVID-19) is a declared pandemic that is spreading all over the world at a dreadfully fast rate. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the pathogen of COVID-19, infects the human body using angiotensin-converting enzyme 2 (ACE2) as a receptor identical to the severe acute respiratory syndrome (SARS) pandemic that occurred in 2002-2003. ⋯ Here, we review transgenic mice that express human ACE2 in the airway and other epithelia and have shown to develop a rapidly lethal infection after intranasal inoculation with SARS-CoV, the pathogen of SARS. This literature review aims to present the importance of utilizing the human ACE2 transgenic mouse model to better understand the pathogenesis of COVID-19 and develop both therapeutics and vaccines.
-
In the frame of the coronavirus disease 2019 (COVID-19) pandemic, recent reports on SARS-CoV-2 potential neuroinvasion placed neurologists on increased alertness in order to assess early neurological manifestations and their potentially prognostic value for the COVID-19 disease. Moreover, the management of chronic neurological diseases, such as Multiple Sclerosis (MS), underwent guided modifications, such as an Extended Interval Dose (EID) of Disease-Modifying Treatment (DMT) administration, in order to minimize patients' exposure to the health system, thus reducing the risk of SARS-CoV-2 infection. In this review, we summarize existing evidence of key immune pathways that the SARS-CoV-2 modifies during COVID-19 and the relevant implication for MS and other autoimmune diseases with associated demyelination (such as Systemic lupus erythematosus and Antiphospholipid syndrome), including the context of potential neuroinvasion by SARS-Cov-2 and the alterations that DMT induces to the immune system. Moreover we hereby aim to provide an overview of the possible consequences that COVID-19 may carry for the Central Nervous System (CNS) in People with MS (PwMS) and other demyelinating diseases, which are likely to pose challenges for treating Neurologists with respect to the long-term disease management of these diseases.