Articles: sars-cov-2.
-
Since its discovery in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 2 180 000 people worldwide and has caused more than 150 000 deaths as of April 16, 2020. SARS-CoV-2, which is the virus causing coronavirus disease 2019 (COVID-19), uses the angiotensin-converting enzyme 2 (ACE2) as a cell receptor to invade human cells. Thus, ACE2 is the key to understanding the mechanism of SARS-CoV-2 infection. This study is to investigate the ACE2 expression in various human tissues in order to provide insights into the mechanism of SARS-CoV-2 infection. ⋯ Our data indicate that SARS-CoV-2 may infect other tissues aside from the lungs and infect persons with different sexes, ages, and races equally. The different host immune responses to SARS-CoV-2 infection may partially explain why males and females, young and old persons infected with this virus have markedly distinct disease severity. This study provides new insights into the role of ACE2 in the SARS-CoV-2 pandemic.
-
Nanomaterials (Basel) · Apr 2020
ReviewOn Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges.
Global health is facing the most dangerous situation regarding the novel severe acute respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility to cause pneumonia induced death in approximately 6.89% of infected individuals (data until 27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China. ⋯ This unmet medical need thus requires significant and very urgent research attention to develop an effective vaccine to address the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are critically summarized including exploitations of novel drugs and potentials of repurposed drugs. The applications of nanochemistry and general nanotechnology was also discussed to give the status of nanodiagnostic systems for COVID-19.
-
Int J Environ Res Public Health · Apr 2020
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) in Dentistry. Management of Biological Risk in Dental Practice.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus first identified in Wuhan, China, and the etiological agent of Coronavirus Disease-2019 (COVID-19). This infection spreads mainly through direct contact with Flügge micro droplets or core droplets that remain suspended as aerosol. Moreover, it has been reported that infected subjects, both with and without clinical signs of COVID-19, can transmit the virus. ⋯ Considering the virus' route of transmission, a specific protocol should be applied to reduce the risk of infection in addition to measures that prevent the spread of infection from a patient to another person or medical tools and equipment (cross-infection). This protocol should be implemented by modifying both patient management and clinical practice, introducing particular devices and organizational practices. This paper aims to discuss and suggest the most appropriate procedures in every aspect of dental practice to reduce infection risk.
-
The novel coronavirus whose outbreak took place in December 2019 continues to spread at a rapid rate worldwide. In the absence of an effective vaccine, inhibitor repurposing or de novo drug design may offer a longer-term strategy to combat this and future infections due to similar viruses. Here, we report on detailed classical and mixed-solvent molecular dynamics simulations of the main protease (Mpro) enriched by evolutionary and stability analysis of the protein. ⋯ Furthermore, analysis of the binding site's conformational changes during the simulation time indicated its flexibility and plasticity, which dashes hopes for rapid and reliable drug design. Conversely, structural stability of the protein with respect to flexible loop mutations indicated that the virus' mutability will pose a further challenge to the rational design of small-molecule inhibitors. However, few residues contribute significantly to the protein stability and thus can be considered as key anchoring residues for Mpro inhibitor design.