Articles: sars-cov-2.
-
Human coronaviruses (HCoV) are common viruses and known to be associated with respiratory diseases, including pneumonia. Currently, seven human coronaviruses have been identified and known to cause upper and lower respiratory infections as well as nosocomial viral infections in humans. The bats, palm civets, and camels are identified as the reservoir of human coronaviruses. In 2002-2003, the emergence of SARS-CoV resulted in an outbreak and led towards the more awareness and importance of scientific research and medical urgency. ⋯ The plant lectins are known to have significant antiviral activities against coronaviruses. Additionally, the plant lectins can be used as potential therapeutics against bacteria, fungus, yeast, and protozoa. In this review, we have discussed the current status of human pathogenic coronavirus emergence and the use of plant lectins as antivirals against SARS-CoV-2.
-
Frontiers in immunology · Jan 2020
Comparative StudyAnalysis of Co-inhibitory Receptor Expression in COVID-19 Infection Compared to Acute Plasmodium falciparum Malaria: LAG-3 and TIM-3 Correlate With T Cell Activation and Course of Disease.
Coronavirus disease 2019 (COVID-19) which is caused by the novel SARS-CoV-2 virus is a severe flu-like illness which is associated with hyperinflammation and immune dysfunction. The virus induces a strong T and B cell response but little is known about the immune pathology of this viral infection. Acute Plasmodium falciparum malaria also causes acute clinical illness and is characterized by hyperinflammation due to the strong production of pro-inflammatory cytokines and a massive activation of T cells. ⋯ COVID-19 patients with a more severe disease course showed higher levels of LAG-3 and TIM-3 than patients with a mild disease course. During recovery, a rapid normalization of these inhibitory receptors could be observed. In summary, comparing the expression of different co-inhibitory molecules in CD8+ and CD4+ T cells in COVID-19 vs. malaria, there is a transient increase of the expression of certain inhibitory receptors like LAG-3 and TIM-3 in COVID-19 in the overall context of acute immune activation.
-
This document aims to provide evidence-based recommendations to estimate the personal protective equipments (PPE), medical devices, and drugs commonly used in the Intensive Care Unit during the COVID-19 pandemic. A systematic literature review and gray literature assessment was performed, and the evidence was categorized using the GRADE methodology. Then a predictive model was built to support the estimation of resources needed during 30 days of the pandemic. ⋯ It is important to remark the difficult in estimating and managing the number of essential supplies and equipment required during a pandemic. The model allowed us to predict the resources required to provide critical care during 30 days of pandemic activity. Given the constant evolution of COVID-19, these recommendations might change as evidence evolves.
-
Frontiers in microbiology · Jan 2020
ReviewMain Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has become a pandemic, infecting more than 4,000,000 people worldwide. This review describes the main clinical features of COVID-19 and potential role of microbiota in COVID-19. SARS-CoV and SARS-CoV-2 have 79.5% nucleotide sequence identity and use angiotensin-converting enzyme 2 (ACE2) receptors to enter host cells. ⋯ Moreover, the gut microbiota enhances antiviral immunity by increasing the number and function of immune cells, decreasing immunopathology, and stimulating interferon production. In turn, respiratory viruses are known to influence microbial composition in the lung and intestine. Therefore, the analysis of changes in the microbiota during SARS-CoV-2 infection may help predict patient outcomes and allow the development of microbiota-based therapies.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus within the family Coronaviridae. It is an enveloped single-stranded positive-sense RNA virus. Since December of 2019, a global expansion of the infection has occurred with widespread dissemination of coronavirus disease 2019 (COVID-19). ⋯ Although ARDS is a complication of SARS-CoV-2 infection, it is not viral replication or infection that causes tissue injury; rather, it is the result of dysregulated hyperinflammation in response to viral infection. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome pathway and release of its products including the proinflammatory cytokines IL-6 and IL-1β. Here we review the literature that describes the pathogenesis of severe COVID-19 and NLRP3 activation and describe an important role in targeting this pathway for the treatment of severe COVID-19.