Articles: sars-cov-2.
-
Ther Adv Respir Dis · Jan 2020
ReviewLung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications.
The lung is a key target of the cytokine storm that can be triggered by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the widespread clinical syndrome known as coronavirus disease 2019 (COVID-19). Indeed, in some patients, SARS-CoV-2 promotes a dysfunctional immune response that dysregulates the cytokine secretory pattern. Hypercytokinemia underlies the hyperinflammatory state leading to injury of alveolar epithelial cells and vascular endothelial cells, as well as to lung infiltration sustained by neutrophils and macrophages. ⋯ Therefore, cytokines and their receptors, as well as cytokine-dependent intracellular signalling pathways can be targeted by potential therapies aimed to relieve the heavy burden of cytokine storm. In particular, the anti-IL-6-receptor monoclonal antibody tocilizumab is emerging as one of the most promising pharmacologic treatments. The reviews of this paper are available via the supplemental material section.
-
The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. ⋯ We will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease. Although many questions still require answers, we hope that this review helps in the understanding and eradication of the threatening disease.
-
Frontiers in immunology · Jan 2020
ReviewHighlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection.
A sudden outbreak of COVID-19 caused by a novel coronavirus, SARS-CoV-2, in Wuhan, China in December 2019 quickly grew into a global pandemic, putting at risk not only the global healthcare system, but also the world economy. As the disease continues to spread rapidly, the development of prophylactic and therapeutic approaches is urgently required. Although some progress has been made in understanding the viral structure and invasion mechanism of coronaviruses that may cause severe cases of the syndrome, due to the limited understanding of the immune effects caused by SARS-CoV-2, it is difficult for us to prevent patients from developing acute respiratory distress syndrome (ARDS) and pulmonary fibrosis (PF), the major complications of coronavirus infection. ⋯ We also discussed the indirect immune response caused by SARS and direct infection, replication, and destroying of immune cells by MERS-CoV. The molecular mechanisms of SARS-CoV and MERS-CoV infection-induced lymphopenia or cytokine storm may provide some hint toward fight against SARS-CoV-2, the novel coronavirus. This may provide guidance over using immune therapy as a combined treatment to prevent patients developing severe respiratory syndrome and largely reduce complications.
-
Countries around the world are currently fighting the coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a betacoronavirus, belonging to the same genus as severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV. Currently, there are no proven antiviral therapies for COVID-19. ⋯ Overall, current data are insufficient to judge the efficacy of remdesivir for COVID-19, and the results of additional randomized studies are eagerly anticipated. In this narrative review, we provide an overview of Ebola and coronavirus outbreaks. We then summarize preclinical and clinical studies of remdesivir for Ebola and COVID-19.
-
On January 23, 2020, China imposed a quarantine on the city of Wuhan to contain the SARS-CoV-2 outbreak. Regardless of this measure, the new infection has spread to several countries around the world. ⋯ The estimation of the time of arrival of the outbreak from its epicenter, allows for a time period to implement and strengthen preventive measures aimed at the general population as well as to strengthen hospital infrastructure and training of human resources. In the present study, this estimation was accurate, as observed from the real data of the beginning of the outbreak in Mexico City up to April 6, 2020.