Articles: sars-cov-2.
-
Frontiers in immunology · Jan 2020
ReviewThe Impact of Pre-existing Comorbidities and Therapeutic Interventions on COVID-19.
Evidence from the global outbreak of SARS-CoV-2 has clearly demonstrated that individuals with pre-existing comorbidities are at a much greater risk of dying from COVID-19. This is of great concern for individuals living with these conditions, and a major challenge for global healthcare systems and biomedical research. Not all comorbidities confer the same risk, however, many affect the function of the immune system, which in turn directly impacts the response to COVID-19. ⋯ Here, we review immune dysfunction in response to SARS-CoV-2 infection and the impact of pre-existing comorbidities on the development of COVID-19. We explore how underlying disease etiologies and common therapies used to treat these conditions exacerbate COVID-19 progression. Moreover, we discuss the long-term challenges associated with the use of both novel and repurposed therapies for the treatment of COVID-19 in patients with pre-existing comorbidities.
-
Frontiers in immunology · Jan 2020
ReviewHigh-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects.
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. ⋯ In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
-
Multicenter Study Observational Study
SARS-CoV-2 Detection on Bronchoalveolar Lavage: An Italian Multicenter experience.
Bronchoscopy with bronchoalveolar lavage (BAL) during the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) pandemic should be reserved to a limited number of clinical indications. The yield of BAL for the diagnosis of suspected or confirmed pulmonary SARS-CoV-2 infection is still unknown. ⋯ In our centers, the rate of detection of SARS-CoV-2 on BAL in patients with suspected infection was 37.2%. The agreement of BAL with nasopharyngeal swabs was high; CT alterations could predict the pretest probability of SARS-CoV-2 infection, but suspicion of viral infection should be always considered.
-
By the end of 2019 the first cases of severe pneumonia of unknown origin were reported in Wuhan, China. The causative agent was identified as a novel b-coronavirus SARS-CoV-2 and the disease was named COVID-19. Since the beginning of 2020, the infection has spread worldwide, which led the WHO to declare COVID-19 a public health emergency of international concern and to characterize the current situation as a pandemic. ⋯ Typical imaging findings include multifocal peripherally distributed ground-glass opacities or consolidations, interlobular septal thickening, crazy paving appearance and cystic changes. The overall case fatality rate is estimated to range from 1 to 3 %, however, it is dependent on age and underlying medical comorbidities. Current potential treatment options include hydroxychloroquine, remdesivir, lopinavir/ritonavir and convalescent plasma.
-
A novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been recently identified as an infectious disease affecting the respiratory system of humans. This disease is caused by SARS-CoV-2 that was identified in Chinese patients having severe pneumonia and flu-like symptoms. COVID-19 is a contagious disease that spreads rapidly via droplet particles arising through sneezing and coughing action of an infected person. ⋯ Other lateral flow assay (LFA)-based techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor-limited uniform detection assay (FELUDA), etc. have shown promising results in rapid detection of pathogens. Diagnosis holds a critical importance in the pandemic situation when there is no potential drug for the pathogen available in the market. This review sums up the different diagnostic approaches designed or proposed to combat the crisis of widespread diagnosis due to the sudden outbreak of a novel pathogen, SARS-CoV-2 in 2019.