Articles: sars-cov-2.
-
The pandemic caused by the SARS-COV-2 or COVID-19 virus has been a global challenge given its high rate of transmission and lack of effective therapy or vaccine. This scenario has led to the use of various drugs that have demonstrated a potential effect against the virus in vitro. ⋯ The use of chloroquine/hydroxychloroquine, azithromycin and antiviral treatment and has been proposed by various groups, supported by in-vitro studies and limited patient series, without the adequate scientific rigor that precedes drug prescription. Although it may represent the only hope for many patients, it is important to know the main adverse effects associated with the use of these drugs and to better select patients who may benefit from them.
-
To differentiate between respiratory infections caused by SARS-CoV-2 and other respiratory pathogens during the COVID-19 outbreak in Wuhan, we simultaneously tested for SARS-CoV-2 and pathogens associated with CAP to determine the incidence and impact of respiratory coinfections in COVID-19 patients. ⋯ Coinfections in COVID-19 patients are common. The coinfecting pathogens can be detected at variable intervals during COVID-19 disease course and remain an important consideration in targeted treatment strategies for COVID-19 patients.
-
Comput Struct Biotechnol J · Jan 2020
Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model.
The infection of a novel coronavirus found in Wuhan of China (SARS-CoV-2) is rapidly spreading, and the incidence rate is increasing worldwide. Due to the lack of effective treatment options for SARS-CoV-2, various strategies are being tested in China, including drug repurposing. In this study, we used our pre-trained deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI) to identify commercially available drugs that could act on viral proteins of SARS-CoV-2. ⋯ However, in our prediction, they may also bind to the replication complex components of SARS-CoV-2 with an inhibitory potency with Kd < 1000 nM. In addition, we also found that several antiviral agents, such as Kaletra (lopinavir/ritonavir), could be used for the treatment of SARS-CoV-2. Overall, we suggest that the list of antiviral drugs identified by the MT-DTI model should be considered, when establishing effective treatment strategies for SARS-CoV-2.
-
Frontiers in medicine · Jan 2020
D-dimer, Troponin, and Urea Level at Presentation With COVID-19 can Predict ICU Admission: A Single Centered Study.
Background: Identifying clinical-features or a scoring-system to predict a benefit from hospital admission for patients with COVID-19 can be of great value for the decision-makers in the health sector. We aimed to identify differences in patients' demographic, clinical, laboratory, and radiological findings of COVID-19 positive cases to develop and validate a diagnostic-model predicting who will develop severe-form and who will need critical-care in the future. Methods: In this observational retrospective study, COVID-19 positive cases (total 417) diagnosed in Al Kuwait Hospital, Dubai, UAE were recruited, and their prognosis in terms of admission to the hospital and the need for intensive care was reviewed until their tests turned negative. ⋯ ROC and Precision-Recall curves showed that among all variables, D dimers (>1.5 mg/dl), Urea (>6.5 mmol/L), and Troponin (>13.5 ng/ml) could positively predict the admission to ICU in patients with COVID-19. On the other hand, decreased Lymphocyte count and albumin can predict admission to ICU in patients with COVID-19 with acceptable sensitivity (59.32, 95% CI [49.89-68.27]) and specificity (79.31, 95% CI [72.53-85.07]). Conclusion: Using these three predictors with their cut of values can identify patients who are at risk of developing critical COVID-19 and might need aggressive intervention earlier in the course of the disease.