Articles: sars-cov-2.
-
In December 2019, a new virus (initially called 'Novel Coronavirus 2019-nCoV' and later renamed to SARS-CoV-2) causing severe acute respiratory syndrome (coronavirus disease COVID-19) emerged in Wuhan, Hubei Province, China, and rapidly spread to other parts of China and other countries around the world, despite China's massive efforts to contain the disease within Hubei. As with the original SARS-CoV epidemic of 2002/2003 and with seasonal influenza, geographic information systems and methods, including, among other application possibilities, online real-or near-real-time mapping of disease cases and of social media reactions to disease spread, predictive risk mapping using population travel data, and tracing and mapping super-spreader trajectories and contacts across space and time, are proving indispensable for timely and effective epidemic monitoring and response. ⋯ Some of these dashboards and applications are receiving data updates in near-real-time (at the time of writing), and one of them is meant for individual users (in China) to check if the app user has had any close contact with a person confirmed or suspected to have been infected with SARS-CoV-2 in the recent past. We also discuss additional ways GIS can support the fight against infectious disease outbreaks and epidemics.
-
Editorial
Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses.
Coronaviruses (CoVs) are a large family of enveloped, positive-strand RNA viruses. Four human CoVs (HCoVs), the non-severe acute respiratory syndrome (SARS)-like HCoVs (namely HCoV 229E, NL63, OC43, and HKU1), are globally endemic and account for a substantial fraction of upper respiratory tract infections. Non-SARS-like CoV can occasionally produce severe diseases in frail subjects but do not cause any major (fatal) epidemics. ⋯ Understanding the role of paucisymptomatic subjects and stratifying patients according to the risk of developing severe clinical presentations is pivotal for implementing reasonable measures to contain the infection and to reduce its mortality. Whilst the future evolution of this epidemic remains unpredictable, classic public health strategies must follow rational patterns. The emergence of yet another global epidemic underscores the permanent challenges that infectious diseases pose and underscores the need for global cooperation and preparedness, even during inter-epidemic periods.
-
The COVID-19 pandemic, after it was reported in December 2019, is a highly contagious and now spreading to over 190 countries, causing a severe public health burden. Currently, there is no vaccine or specific drug to treat COVID-19, which is caused by a novel coronavirus, SARS-2-CoV. ⋯ However, even after this pandemic, COVID-19 may still have a chance to come back. Therefore, we need to come out with new strategies for drug discovery for combating COVID-19 in the future.