Articles: nav1-8-voltage-gated-sodium-channel-metabolism.
-
Systemically administered dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonists, produces analgesia and sedation. Peripherally restricted α2-AR antagonist could block the analgesic effect of systemic DEX on neuropathic pain, with no effect on sedation, indicating peripheral analgesic effect of DEX. Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 play important roles in the conduction of nociceptive sensation. Both α2-AR and Nav1.8 are found in small nociceptive DRG neurons. We, therefore, investigated the effects of DEX on the Nav1.8 currents in acutely dissociated small-diameter DRG neurons. ⋯ We established a functional link between α2-AR and Nav1.8 in primary sensory neurons utilizing the Gi/o/AC/cAMP/PKA pathway, which probably mediating peripheral analgesia of DEX.
-
Previous studies have shown that 5-HT3-antagonists reduce muscle pain, but there are no studies that have investigated the expression of 5-HT3-receptors in human muscles. Also, tetrodotoxin resistant voltage gated sodium-channels (NaV) are involved in peripheral sensitization and found in trigeminal ganglion neurons innervating the rat masseter muscle. This study aimed to investigate the frequency of nerve fibers that express 5-HT3A-receptors alone and in combination with NaV1.8 sodium-channels in human muscles and to compare it between healthy pain-free men and women, the pain-free masseter and tibialis anterior muscles, and patients with myofascial temporomandibular disorders (TMD) and pain-free controls. ⋯ This study showed that the 5-HT3A-receptor is highly expressed in human masseter and tibialis muscles and that there are more nerve fibers that express 5-HT3A-receptors in the masseter of women with myofascial TMD compared to healthy women. These findings indicate that 5-HT3-receptors might be up-regulated in myofascial TMD and could serve as potential biomarkers of chronic muscle pain.
-
Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. ⋯ Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain.
-
Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown. ⋯ ASIC3 activation may manifest a new type of nociceptor priming in IB4-negative muscle nociceptors. The activation of ASIC3 and TRPV1 as well as enhanced NaV1.8 activity are essential for the development of long-lasting hyperalgesia in acid-induced, chronic, widespread muscle pain.
-
Resurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.6 is the major contributor to these TTX-S resurgent currents. ⋯ We also show that both TTX-S and TTX-R resurgent currents in DRG neurons are enhanced by inflammatory mediators. Furthermore, the β4 peptide increased excitability of small DRG neurons in the presence of TTX. We propose that these slow TTX-R resurgent currents contribute to the membrane excitability of nociceptive DRG neurons under normal conditions and that enhancement of both types of resurgent currents by inflammatory mediators could contribute to sensory neuronal hyperexcitability associated with inflammatory pain.