Articles: regulatory-t-lymphocytes.
-
To investigate whether Shen-Fu Injection (, SFI) reduces post-resuscitation immune dysfunction in a porcine model of cardiac arrest by modulating apoptosis of regulatory T lymphocytes (Treg) in the spleen. ⋯ SFI has signifificant effects in attenuating post-resuscitation immune dysfunction by modulating apoptosis of Treg in the spleen.
-
Experimental autoimmune myocarditis (EAM) is an inflammatory cardiac disease driven by autoantigen-specific CD4+ T cells. Th17 and Treg cells are crucial participants in immune response. A wide variety of immune disorders are associated with Th17/Treg imbalance. MicroRNA-155 (miR-155) is a pivotal regulator of the immune system. However, the modulatory effect of miR-155 on Th17/Treg immune response during EAM is unknown. Our study aims to investigate the potential role of miR-155 on the development of autoimmune myocarditis. In this study, we revealed that miR-155 expression was highly elevated in heart tissue and CD4+ T cells during EAM. Also, we identified a proliferative and functional imbalance of Th17/Treg in EAM, which is due to a more active development of Th17 cells and an increased resistance of Th17 cells to Treg-mediated suppression. MiR-155 inhibition in EAM resulted in attenuated severity of disease and cardiac injury, reduced Th17 immune response, and decreased dendritic cell (DC) function of secreting Th17-polarizing cytokines. Furthermore, CD4+ T cells from miR-155-inhibited EAM mice exhibited reduced proliferation and IL-17A secretion in response to autoantigen. Finally, we confirmed an indispensable positive role of miR-155 on the differentiation of Th17 cells and the DC function of secreting Th17-polarizing cytokines through in vitro studies. These findings demonstrated that miR-155 adversely promotes EAM by driving a Th17/Treg imbalance in favor of Th17 cells, and anti-miR-155 treatment can significantly reduce the autoimmune response thus to ameliorate EAM, suggesting that miR-155 inhibition could be a promising therapeutic strategy for the treatment of autoimmune myocarditis. ⋯ MiR-155 expression was highly elevated in EAM mice. An imbalance of Th17/Treg existed in EAM mice. MiR-155 inhibition in EAM attenuated disease severity and cardiac injury. MiR-155 inhibition suppressed Th17 immune response in EAM. MiR-155 inhibition reduced DC function of secreting Th17-polarizing cytokines in EAM.
-
BMP and activin membrane-bound inhibitor (BAMBI) is postulated to inhibit or modulate transforming growth factor β (TGF-β) signaling. Furthermore, strong upregulation of BAMBI expression following in vitro infection of chronic obstructive pulmonary disease (COPD) lung tissue has been demonstrated. In this study, we investigated whether TGF-β/BAMBI pathway is associated with COPD. ⋯ BAMBI expression was first observed on human CD4(+) T cells, with a typical membrane-bound pattern. The enhanced plasma BAMBI levels in COPD positively correlated with the increased plasma TGF-β1 levels and Th17/Treg ratio. Together, an impaired TGF-β/BAMBI pathway may promote the inflammation leading to Th17/Treg imbalance, which is a new mechanism in smokers who develop COPD.
-
This commentary highlights the article by Birjandi et al showing that alterations in regulatory T cells can exacerbate lung fibrosis.
-
Imperatorin is a furanocoumarin compound which exists in many medicinal herbs and possesses various biological activities. Herein, we investigated the antiallergic effects of imperatorin in asthmatic mice and explored the immunomodulatory actions of imperatorin on immune cells. We used a murine model of ovalbumin (OVA)-induced asthma to evaluate the therapeutic potential of imperatorin. ⋯ Additionally, imperatorin directly suppressed activated CD4(+) T-cell proliferation and cytokine production. Imperatorin may possess therapeutic potential against Th2-mediated allergic asthma not only via stimulating DC induction of Tregs but also via direct inhibition of Th2 cell activation. These findings provide new insights into how imperatorin affects the Th2 immune response and the development of imperatorin as a Treg-type immunomodulatory agent to treat allergic asthma.