Articles: histamine.
-
Controlled Clinical Trial
A transcranial direct current stimulation over the sensorimotor cortex modulates the itch sensation induced by histamine.
Itching can be suppressed by scratching. However, scratching may aggravate itch symptoms by damaging the skin. Therefore, identifying an alternative approach to suppress itching is of clinical importance. The aim of the present study was to determine whether a transcranial direct current stimulation (tDCS) was useful for itch relief. ⋯ The present study demonstrated that a tDCS intervention may be an alternative approach for suppressing unpleasant itch sensations in healthy participants. Since tDCS has some advantages, namely, its easy application and safety in a clinical setting, it may become a useful method for the treatment of itching.
-
Histamine regulates release of neurotransmitters such as dopamine, serotonin, gamma-aminobutyric acid (GABA), glutamate and also is involved in several functions in central nervous system (CNS). It has been shown that histamine participates in disorders like seizure. It has been well documented that morphine dose-dependently induces anti or proconvulsant effects. ⋯ Our results showed that activation of H1 receptors by 2-(2-Pyridyl)-ethylamine exerts anticonvulsant properties while inhibition of H1 receptors by pyrilamine maleate induced proconvulsant effects. Furthermore, we showed that immepip dihydrobromide, a H3 receptor agonist, increased seizure susceptibility to PTZ whereas thioperamide, a H3 receptor antagonist increased seizure threshold. We also revealed that pretreatment with morphine potently reversed the effects of histaminergic system on seizure threshold suggesting the involvement of opioid system in alteration of seizure threshold by histaminergic drugs.
-
Eur. J. Intern. Med. · Dec 2015
D-dimer and histamine in early stage bacteremia: A prospective controlled cohort study.
Plasma histamine levels and D-dimer predict disease severity and mortality in advanced septic shock. We hypothesized that increased plasma histamine levels parallel coagulation activation and yield prognostic significance already at a very early stage of bacteremia. ⋯ Histamine levels are elevated in only few patients (4%) with newly diagnosed bacteremia. Our findings suggest that D-dimer, but not plasma histamine, could be a promising marker of lethality already at a very early stage of blood stream infection.
-
Rev Med Inst Mex Seguro Soc · Nov 2015
Review Case Reports[Anaphylactic shock associated with ceftriaxone, case report and literature review].
This study presents a case of anaphylactic shock in a senile patient, who had a biphasic event associated with the administration of a beta-lactam cephalosporin (ceftriaxone), needing stay in the intensive care unit and support with vasoactive amines, which it is rare to see in this issue, already being in itself a difficult diagnosis and often undervalued by rejecting causes of shock in a senile patient other than cardiogenic or septic. Also, a case review is made based on epidemiological issues, clinical and paraclinical diagnosis, and current treatment implications based on current international guidelines and a review of the topic.
-
Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. ⋯ Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain cholinergic neurons are important modulators of cortical arousal and γ activity, and in this study we investigated the mechanism by which these neurons are activated by the wake-active neurotransmitter histamine. We found that histamine inhibited a class of K(+) leak channels called TASK channels and that deletion of TASK channels selectively on cholinergic neurons modulated baseline EEG activity as well as histamine-induced changes in γ activity. By identifying a discrete brain circuit where TASK channels can influence γ activity, these results represent new knowledge that enhances our understanding of how subcortical arousal systems may contribute to the generation of attentive states.