Articles: cations.
-
Pioneering effort has been made to facilitate the recognition of pathology in malignancies based on whole-slide images (WSIs) through deep learning approaches. It remains unclear whether we can accurately detect and locate basal cell carcinoma (BCC) using smartphone-captured images. ⋯ Based on the accessible MOIs via smartphone photography, we developed two deep learning frameworks for recognizing BCC pathology with high sensitivity and specificity. This work opens a new avenue for automatic BCC diagnosis in different clinical scenarios. What's already known about this topic? The diagnosis of basal cell carcinoma (BCC) is labour intensive due to the large number of images to be examined, especially when consecutive slide reading is needed in Mohs surgery. Deep learning approaches have demonstrated promising results on pathological image-related diagnostic tasks. Previous studies have focused on whole-slide images (WSIs) and leveraged classification on image patches for detecting and localizing breast cancer metastases. What does this study add? Instead of WSIs, microscopic ocular images (MOIs) photographed from microscope eyepieces using smartphone cameras were used to develop neural network models for recognizing BCC automatically. The MOI- and WSI-based models achieved comparable areas under the curve around 0·95. Two deep learning frameworks for recognizing BCC pathology were developed with high sensitivity and specificity. Recognizing BCC through a smartphone could be considered a future clinical choice.
-
Randomized Controlled Trial Multicenter Study Comparative Study
The Impact of Gravity versus Suction-driven Therapeutic Thoracentesis on Pressure-related Complications: the GRAVITAS Multicenter Randomized Controlled Trial.
Thoracentesis can be accomplished by active aspiration or drainage with gravity. This trial investigated whether gravity drainage could protect against negative pressure-related complications such as chest discomfort, re-expansion pulmonary edema, or pneumothorax compared with active aspiration. ⋯ Thoracentesis via active aspiration and gravity drainage are both safe and result in comparable levels of procedural comfort and dyspnea improvement. Active aspiration requires less total procedural time.
-
There remains debate over the best invasive diagnostic modality for mediastinal nodal evaluation. Prior studies have limited generalizability and insufficient power to detect differences in rare adverse events. We compared the risks and costs of endobronchial ultrasound (EBUS)-guided nodal aspiration and mediastinoscopy performed for any indication in a large national cohort. ⋯ When performed as isolated procedures, EBUS is associated with lower risks and costs compared with mediastinoscopy. Future studies comparing the effectiveness of EBUS vs mediastinoscopy in the community at large will help determine which procedure is superior or if trade-offs exist.
-
Tumor treating fields (TTFields) is a noninvasive physical modality of cancer therapy that applies low-intensity, intermediate frequency, and alternating electric fields to a tumor. Interference with mitosis was the first mechanism describing the effects of TTFields on cancer cells; however, TTFields was shown to not only reduce the rejoining of radiation-induced DNA double-strand breaks (DSBs), but to also induce DNA DSBs. The mechanism(s) by which TTFields generates DNA DSBs is related to the generation of replication stress including reduced expression of the DNA replication complex genes MCM6 and MCM10 and the Fanconi's Anemia pathway genes. ⋯ The effect of TTFields exposure with concomitant exposure to cisplatin or PARP inhibition, the combination of TTFields plus concomitant PARP inhibition followed by radiation, or radiation alone at the end of a TTFields exposure were all synergistic. Finally, gene expression analysis of 47 key mitosis regulator genes suggested that TTFields-induced mitotic aberrations and DNA damage/replication stress events, although intimately linked to one another, are likely initiated independently of one another. This suggests that enhanced replication stress and reduced DNA repair capacity are also major mechanisms of TTFields effects, effects for which there are therapeutic implications.