Articles: acid-sensing-ion-channels-metabolism.
-
We have recently demonstrated that pathological changes leading to increased bone resorption by osteoclast activation are related to the induction of pain-like behavior in ovariectomized (OVX) mice. In addition, bisphosphonate and the antagonist of transient receptor potential vanilloid type 1 (TRPV1), an acid-sensing nociceptor, improved the threshold value of pain-like behaviors accompanying an improvement in the acidic environment in the bone tissue based on osteoclast inactivation. ⋯ This inhibitor and antagonists were found to improve the threshold value of pain-like behavior in OVX mice. These results indicated that the skeletal pain accompanying osteoporosis is possibly associated with the acidic microenvironment and increased ATP level caused by osteoclast activation under a high bone turnover state.
-
Molecular neurobiology · Mar 2016
ASIC3 Is Required for Development of Fatigue-Induced Hyperalgesia.
An acute bout of exercise can exacerbate pain, hindering participation in regular exercise and daily activities. The mechanisms underlying pain in response to acute exercise are poorly understood. We hypothesized that proton accumulation during muscle fatigue activates acid-sensing ion channel 3 (ASIC3) on muscle nociceptors to produce hyperalgesia. ⋯ Genetic deletion of ASIC3 in primary afferents innervating muscle using an HSV-1 expressing microRNA (miRNA) to ASIC3 surprisingly had no effect on the development of the hyperalgesia. Muscle fatigue increased the number of macrophages in muscle, and removal of macrophages from muscle with clodronate liposomes prevented the development of fatigue-enhanced hyperalgesia. Thus, these data suggest that fatigue reduces pH in muscle that subsequently activates ASIC3 on macrophages to enhance hyperalgesia to muscle insult.
-
Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. ⋯ Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.
-
Acid-sensing ion channels (ASICs) are cation channels which were activated by extracellular acidosis and involved in various physiological and pathological processes in the nervous system. Inflammasome is a key component of the innate immune response in host against harmful and irritable stimuli. As the first discovered molecular platform, NLRP1 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 1) inflammasome is expressed in neurons and implicated in many nervous system diseases such as brain injury, nociception and epilepsy. However, little is known about the effect of ASICs on NLRP1 inflammasome activation under acidosis. ⋯ Our data showed that NLRP1 inflammasome could be activated by extracellular acidosis though ASIC-BK channel K(+) signal pathway and was involved in extracellular acidosis-induced cortical neuronal injury.
-
Migraine is the most common neurological disorder and one of the most common chronic pain conditions. Despite its prevalence, the pathophysiology leading to migraine is poorly understood and the identification of new therapeutic targets has been slow. Several processes are currently thought to contribute to migraine including altered activity in the hypothalamus, cortical-spreading depression (CSD), and afferent sensory input from the cranial meninges. ⋯ Although few studies have directly examined a role of ASICs in migraine, studies directly examining a connection have generated promising results including efficacy of ASIC blockers in both preclinical migraine models and in human migraine patients. The purpose of this review is to discuss the pathophysiology thought to contribute to migraine and findings that implicate decreased pH and/or ASICs in these events, as well as propose issues to be resolved in future studies of ASICs and migraine. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.