Articles: respiratory-distress-syndrome.
-
There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. ⋯ This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.
-
Journal of critical care · Apr 2024
The depth of neuromuscular blockade is not related to chest wall elastance and respiratory mechanics in moderate to severe acute respiratory distress syndrome patients. A prospective cohort study.
Data concerning the depth of neuromuscular blockade (NMB) required for effective relaxation of the respiratory muscles in ARDS are scarce. We hypothesised that complete versus partial NMB can modify respiratory mechanics. ⋯ In ARDS, the relaxation of the respiratory muscles seems to be independent of the NMB level.
-
J. Cardiothorac. Vasc. Anesth. · Apr 2024
Macklin Effect: From Pathophysiology to Clinical Implication.
Air leak syndromes (such as pneumomediastinum, pneumothorax, or subcutaneous emphysema) are frequent complications of acute respiratory distress syndrome (ARDS). Unfortunately, the development of air leaks is associated with worse outcomes. In addition, it has been hypothesized that the development of pneumomediastinum could be a marker of disease severity in patients with respiratory failure receiving noninvasive respiratory support or assisted ventilation. ⋯ The Macklin effect could be an accurate predictor of barotrauma in patients with ARDS (sensitivity = 89.2% [95% CI: 74.6-96.9]; specificity = 95.6% [95% CI: 90.6-98.4]), and may be a marker of disease severity. Accordingly, the detection of the Macklin effect on a chest CT scan could be used to select which patients with ARDS might benefit from different treatment algorithms, including advanced respiratory monitoring, early intubation, or, potentially, the institution of early extracorporeal support with or without invasive ventilation. In this video, the authors summarize the pathophysiology and potential clinical significance and applications of the Macklin effect in patients with acute respiratory failure.