Articles: brain.
-
In this study, we evaluated the potential of a network approach to electromyography and electroencephalography recordings to detect covert command-following in healthy participants. The motivation underlying this study was the development of a diagnostic tool that can be applied in common clinical settings to detect awareness in patients that are unable to convey explicit motor or verbal responses, such as patients that suffer from disorders of consciousness (DoC). ⋯ Our work highlights the importance of combining EEG and peripheral measurements to detect command-following, which could be important for improving the detection of covert responses consistent with volition in unresponsive patients.
-
Emerging evidence suggests that dysbiosis of the gut microbiota is associated with the pathogenesis of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The microbiota-gut-brain axis plays a crucial role in the development and progression of PD, and numerous studies have demonstrated the potential therapeutic benefits of modulations in the intestinal microbiota. ⋯ The discussion underscores the increased influence of the gut microbiota in the pathogenesis of PD. While the relationship is not fully elucidated, existing research demonstrates a strong correlation between changes in the composition of gut microbiota and disease development, and further investigation is warranted to explain the specific underlying mechanisms.
-
Anesthesia and analgesia · Feb 2025
Gut Microbiota Influences Developmental Anesthetic Neurotoxicity in Neonatal Rats.
Anesthetic exposure during childhood is significantly associated with impairment of neurodevelopmental outcomes; however, the causal relationship and detailed mechanism of developmental anesthetic neurotoxicity remain unclear. Gut microbiota produces various metabolites and influences the brain function and development of the host. This relationship is referred to as the gut-brain axis. Gut microbiota may influence developmental anesthetic neurotoxicity caused by sevoflurane exposure. This study investigated the effect of changes in the composition of gut microbiota after fecal microbiota transplantation on spatial learning disability caused by developmental anesthetic neurotoxicity in neonatal rats. ⋯ The alternation of gut microbiota after fecal microbiota transplantation influenced spatial learning ability in neonatal rats with developmental anesthetic neurotoxicity. Modulation of the gut microbiota may be an effective prophylaxis for developmental anesthetic neurotoxicity in children.