Articles: critical-illness.
-
Critically ill patients undergo early impairment of their gut microbiota (GM) due to routine antibiotic therapies and other environmental factors leading to intestinal dysbiosis. The GM establishes connections with the rest of the human body along several axes representing critical inter-organ crosstalks that, once disrupted, play a major role in the pathophysiology of numerous diseases and their complications. Key players in this communication are GM metabolites such as short-chain fatty acids and bile acids, neurotransmitters, hormones, interleukins, and toxins. ⋯ Harnessing the GM in ICU could improve the management of several challenges, such as infections, traumatic brain injury, heart failure, kidney injury, and liver dysfunction. The study of molecular pathways affected by the GM in different clinical conditions is still at an early stage, and evidence in critically ill patients is lacking. This review aims to describe dysbiosis in critical illness and provide intensivists with a perspective on the potential as adjuvant strategies (e.g., nutrition, probiotics, prebiotics and synbiotics supplementation, adsorbent charcoal, beta-lactamase, and fecal microbiota transplantation) to modulate the GM in ICU patients and attempt to restore eubiosis.
-
Delirium is a frequent manifestation of acute brain dysfunction and is associated with cognitive impairment. The hypothesized mechanism of brain dysfunction during critical illness is centered on neuroinflammation, regulated in part by the cholinergic system. Point-of-care serum cholinesterase enzyme activity measurements serve as a real-time index of cholinergic activity. We hypothesized that cholinesterase activity during critical illness would be associated with delirium in the intensive care unit (ICU) and cognitive impairment after discharge. ⋯ Cholinesterase activity during critical illness is associated with delirium but not with outcomes after discharge, findings that may reflect mechanisms of acute brain organ dysfunction.
-
Journal of critical care · Dec 2022
Randomized Controlled TrialApplying bio-impedance vector analysis (BIVA) to adjust ultrafiltration rate in critically ill patients on continuous renal replacement therapy: A randomized controlled trial.
Bioimpedance vector analysis (BIVA) has been suggested as a valuable tool in assessing volume status in critically ill patients. However, its effectiveness in guiding fluid removal by continuous renal replacement therapy (CRRT) has not been evaluated. ⋯ BIVA guided UF prescription may be associated with a lower rate of fluid overload. Larger studies are required to evaluate its impact on patients' outcomes.
-
Journal of critical care · Dec 2022
ReviewFasting practices of enteral nutrition delivery for airway procedures in critically ill adult patients: A scoping review.
There is limited understanding of fasting practices and reported safety concerns for airway procedures in critically ill adults. ⋯ In the reported literature, there is wide variation in EN fasting practices for airway procedures in critically ill patients with limited evidence to inform practice.
-
Continuous electroencephalogram (cEEG) monitoring has been widely used in the intensive care unit (ICU) for the evaluation of patients in the ICU with altered consciousness to detect nonconvulsive seizures. We investigated the yield of cEEG when used to evaluate paroxysmal events in patients in the ICU and assessed the predictors of a diagnostic findings. The clinical impact of cEEG was also evaluated in this study. ⋯ Continuous electroencephalogram monitoring is valuable in evaluating paroxysmal events, with a diagnostic yield of 29% in critically ill patients. A history of epilepsy predicts diagnostic studies. Both Y + and Y - cEEG studies may directly impact clinical decisions by leading to ASMs changes.