Articles: amyotrophic-lateral-sclerosis-pathology.
-
Conflicting findings have been reported regarding the lateralized brain abnormality in patients with amyotrophic lateral sclerosis (ALS). In this study, we aimed to investigate the probable lateralization of gray matter (GM) atrophy in ALS patients. We focused on the relationship between the asymmetry in decreased GM volume and the side of disease onset in patients with limb-onset. ⋯ The intriguing findings in subgroup analyses demonstrated that the motor cortex in the contralateral hemisphere of the initially involved limb was most affected. We also found that regional brain atrophy was related to disease progression rate. Our observations suggested that side of limb-onset can predict laterality of GM loss in ALS patients and disease progression correlates with the extent of cortical abnormality.
-
Although the pathophysiological mechanisms underlying the development of amyotrophic lateral sclerosis (ALS) remain to be fully elucidated, there have been significant advances in the understanding of ALS pathogenesis, with evidence emerging of a complex interaction between genetic factors and dysfunction of vital molecular pathways. Glutamate- mediated excitoxicity is an important pathophysiological pathway in ALS, and was identified as an important therapeutic biomarker leading to development of the only pharmacologically based disease-modifying treatment currently available for ALS. ⋯ Genetic therapies, including antisense oligonucleotide approaches have been shown to exert neuroprotective effects in animal models of ALS, and Phase I human trial have been completed demonstrating the feasibility of such a therapeutic approach. The present review summarises the advances in ALS pathogenesis, emphasising the importance of these processes as potential targets for drug development in ALS.
-
To evaluate multimodal MRI of the spinal cord in predicting disease progression and one-year clinical status in amyotrophic lateral sclerosis (ALS) patients. ⋯ Atrophy and DTI metrics predicted ALS disease progression. Cord atrophy was a better biomarker of disease progression than diffusion and MTR. Our study suggests that multimodal MRI could provide surrogate markers of ALS that may help monitoring the effect of disease-modifying drugs.
-
Journal of neurology · Jan 2014
Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging.
Diffusion tensor imaging (DTI) has become a useful tool for investigating early white matter (WM) abnormalities in motor neuron disease. Furthermore, fiber tracking packages that apply multi-tensorial algorithms, such as q-ball imaging (QBI), have been proposed as alternative approaches to overcome DTI limitations in depicting fiber tracts with different orientations within the same voxel. We explored motor and extra-motor WM tract abnormalities in phenotypically heterogeneous amyotrophic lateral sclerosis (ALS) cases aiming to establish a consistent QBI-based WM signature of disease. ⋯ ALS patients showed significantly decreased fiber density and volume, and increased tract length in all regions of CC and left CST (p < 0.05, corrected). In CC body, pyramidal impairment was inversely correlated to fiber density (p = 0.01), while in CC splenium, clinical disability (p = 0.01) and progression (p = 0.02) were inversely correlated to tract length. Our findings further suggest that QBI tractography might represent a promising approach for investigating structural alterations in neurodegenerative diseases and confirm that callosal involvement is a consistent feature of most ALS variants, significantly related to both pyramidal dysfunction and disease disability.
-
Neurobiology of aging · Jan 2014
Cortical thinning and its relation to cognition in amyotrophic lateral sclerosis.
Clinical, genetic, and pathological findings suggest a close relationship between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We studied the patterns of cortical atrophy across the spectrum between ALS and ALS-FTD. A surface-based morphometry analysis based on an age- and sex-matched sample of 81 ALS patients and 62 healthy control subjects (HC) was conducted. ⋯ ALS-FTD patients showed cortical thinning in regions including the frontal and temporal gyri and the posterior cingulate cortex. Cognitively impaired ALS patients showed cortical thinning in regions largely overlapping with those found in ALS-FTD, but changes were less widespread. In conclusion, the cognitive status of ALS subjects is associated with different patterns of cortical atrophy.