Articles: brain-injuries.
-
Journal of neurotrauma · Nov 2001
Comparative StudyComparison of dopamine and norepinephrine after traumatic brain injury and hypoxic-hypotensive insult.
After severe brain trauma, blood-brain barrier disruption and alteration of cerebral arteriolar vasoreactive properties may modify the cerebral response to catecholamines. Therefore, the goal of the present study was to compare the effects of dopamine and norepinephrine in a model of brain injury that consisted of a weight-drop model of injury complicated by a 15-min hypoxic-hypotensive insult (HH). Sprague-Dawley rats (n = 7 in each group) received, after brain injury, an infusion of either norepinephrine (TNE group) or dopamine (TDA group) in order to increase cerebral perfusion pressure (CPP) above 70 mm Hg. ⋯ LCBF decreased similarly in T, TNE and TDA groups. In conclusion, norepinephrine and dopamine are not able to restore values of CPP above 70 mm Hg in a model of severe brain trauma. Furthermore, their systemic vasopressor properties are altered.
-
Journal of neurotrauma · Nov 2001
Neurobehavioral assessment of outcome following traumatic brain injury in rats: an evaluation of selected measures.
Neurobehavioral assessment of outcome has played an integral part in traumatic brain injury (TBI) research. Given the fundamental role of neurobehavioral measurement, it is critical that the tasks used are of the highest psychometric quality. The purpose of this paper is to evaluate several, commonly used neurobehavioral measures along the dimensions of reliability, sensitivity, and validity. ⋯ In the assessment of validity, the results of a factor analysis supported the convergent and discriminative validity of the measures. And in cases in which the preclinical and clinical research have assessed the same construct, the animal model neurobehavioral measures had predictive (or external) validity. Thus, according to the psychometric standards by which measurement instruments are evaluated, the results indicated that these measures provide a valid assessment of neurobehavioral function after fluid percussion TBI.
-
Critical care medicine · Nov 2001
Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult.
Human traumatic brain injury frequently results in secondary complications, including hypoxia. In previous studies, we have reported that posttraumatic hypothermia is neuroprotective and that secondary hypoxia exacerbates histopathologic outcome after fluid-percussion brain injury. The purpose of this study was to assess the therapeutic effects of mild (33 degrees C) hypothermia after fluid-percussion injury combined with secondary hypoxia. In addition, the importance of the rewarming period on histopathologic outcome was investigated. ⋯ These data emphasize the beneficial effects of posttraumatic hypothermia in a traumatic brain injury model complicated by secondary hypoxia and stress the importance of the rewarming period in this therapeutic intervention.
-
Epilepsy is a common outcome of traumatic brain injury (TBI), but the mechanisms of posttraumatic epileptogenesis are poorly understood. One clue is the occurrence of selective hippocampal cell death after fluid-percussion TBI in rats, consistent with the reported reduction of hippocampal volume bilaterally in humans after TBI and resembling hippocampal sclerosis, a hallmark of temporal-lobe epilepsy. Other features of temporal-lobe epilepsy, such as long-term seizure susceptibility, persistent hyperexcitability in the dentate gyrus (DG), and mossy fiber synaptic reorganization, however, have not been examined after TBI. ⋯ Third, by applying GABA(A) antagonists during field-potential and optical recordings in hippocampal slices 3 and 15 weeks after TBI, we unmasked a persistent, abnormal APV-sensitive hyperexcitability that was bilateral and localized to the granule cell and molecular layers of the DG. Finally, using Timm histochemistry, we detected progressive sprouting of mossy fibers into the inner molecular layers of the DG bilaterally 2-27 weeks after TBI. These findings are consistent with the development of posttraumatic epilepsy in an animal model of impact head injury, showing a striking similarity to the enduring behavioral, functional, and structural alterations associated with temporal-lobe epilepsy.
-
Biography Historical Article
Lawrence of Arabia and Hugh Cairns: crash helmets for motorcyclists.