Articles: brain-injuries.
-
Brain energy metabolism is often disturbed after acute brain injuries. Current neuromonitoring methods with cerebral microdialysis (CMD) are based on intermittent measurements (1-4 times/h), but such a low frequency could miss transient but important events. The solution may be the recently developed Loke microdialysis (MD), which provides high-frequency data of glucose and lactate. Before clinical implementation, the reliability and stability of Loke remain to be determined in vivo. The purpose of this study was to validate Loke MD in relation to the standard intermittent CMD method. ⋯ The established standard CMD glucose thresholds may be used as for Loke MD with some caution, but this should be avoided for lactate.
-
Patients with severe acute brain injury have a high risk of a poor clinical outcome due to primary and secondary brain injury. Ketamine reportedly inhibits cortical spreading depolarization, an electrophysiological phenomenon that has been associated with secondary brain injury, making ketamine potentially attractive for patients with severe acute brain injury. The aim of this systematic review is to explore the current literature regarding ketamine for patients with severe acute brain injury. ⋯ The level of evidence regarding the effects of ketamine on functional outcome and serious adverse events in patients with severe acute brain injury is very low. Ketamine may markedly, modestly, or not at all affect these outcomes. Large randomized clinical trials at low risk of bias are needed.
-
Observational Study
Critical thresholds of long-pressure reactivity index and impact of intracranial pressure monitoring methods in traumatic brain injury.
Moderate-to-severe traumatic brain injury (TBI) has a global mortality rate of about 30%, resulting in acquired life-long disabilities in many survivors. To potentially improve outcomes in this TBI population, the management of secondary injuries, particularly the failure of cerebrovascular reactivity (assessed via the pressure reactivity index; PRx, a correlation between intracranial pressure (ICP) and mean arterial blood pressure (MAP)), has gained interest in the field. However, derivation of PRx requires high-resolution data and expensive technological solutions, as calculations use a short time-window, which has resulted in it being used in only a handful of centers worldwide. As a solution to this, low resolution (longer time-windows) PRx has been suggested, known as Long-PRx or LPRx. Though LPRx has been proposed little is known about the best methodology to derive this measure, with different thresholds and time-windows proposed. Furthermore, the impact of ICP monitoring on cerebrovascular reactivity measures is poorly understood. Hence, this observational study establishes critical thresholds of LPRx associated with long-term functional outcome, comparing different time-windows for calculating LPRx as well as evaluating LPRx determined through external ventricular drains (EVD) vs intraparenchymal pressure device (IPD) ICP monitoring. ⋯ Our work suggests that the underlying prognostic factors causing impairment in cerebrovascular reactivity can, to some degree, be detected using lower resolution PRx metrics (similar found thresholding values) with LPRx found clinically using as low as 10 min-by-minute samples of MAP and ICP. Furthermore, EVD derived LPRx with intermittent cerebrospinal fluid draining, seems to present similar outcome capacity as IPD. This low-resolution low sample LPRx method appears to be an adequate substitute for the clinical prognostic value of PRx and may be implemented independent of ICP monitoring method when PRx is not feasible, though further research is warranted.
-
Observational Study
Risk factors and outcomes associated with systolic dysfunction following traumatic brain injury.
Systolic dysfunction has been observed following isolated moderate-severe traumatic brain injury (Ims-TBI). However, early risk factors for the development of systolic dysfunction after Ims-TBI and their impact on the prognosis of patients with Ims-TBI have not been thoroughly investigated. A prospective observational study among patients aged 16 to 65 years without cardiac comorbidities who sustained Ims-TBI (Glasgow Coma Scale [GCS] score ≤12) was conducted. ⋯ Lower GCS (OR: 0.66, 95% CI: 0.45-0.82; P = .001), lower admission oxygen saturation (OR: 0.82, 95% CI: 0.69-0.98; P = .025), and the development of systolic dysfunction (OR: 4.85, 95% CI: 1.36-17.22; P = .015) were independent risk factors for in-hospital mortality in patients with Ims-TBI. Heart rate, GCS, and serum Hs-cTnT level on admission were independent early risk factors for systolic dysfunction in patients with Ims-TBI. The combination of these 3 parameters can better predict the occurrence of systolic dysfunction.