• J Gene Med · Aug 2016

    An expedited approach for sustained delivery of bone morphogenetic protein-7 to bone defects using gene activated fragments of subcutaneous fat.

    • Volker M Betz, Oliver B Betz, Tom Rosin, Alexander Keller, Christian Thirion, Michael Salomon, Suzanne Manthey, Peter Augat, Volkmar Jansson, Peter E Müller, Stefan Rammelt, and Hans Zwipp.
    • Department of Trauma and Reconstructive Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany.
    • J Gene Med. 2016 Aug 1; 18 (8): 199-207.

    BackgroundDelivery of bone morphogenetic protein-7 (BMP-7) to bone defects can be improved by applying gene transfer methods. However, traditional ex vivo gene therapy approaches are cumbersome and costly, requiring the extraction and culturing of cells. Therefore, we evaluated a novel, expedited ex vivo BMP-7 gene transfer technology based on the use of fragments of subcutaneous fat tissue.MethodsWe created 5-mm mid-femoral bone defects in the right femora of 23 male, syngeneic Fischer 344 rats. Adipose tissue was harvested from the subcutaneous fat depot of two donor rats. Bone defects were treated with either unmodified fat (control group) or adenovirally BMP-7 transduced fat fragments (treatment group). Healing of bone defects was assessed by radiographs, microcomputed tomography (μCT) and histology at 6 weeks after the implantation of fat tissue fragments.ResultsRadiographs, μCT-imaging and histology revealed relevant bone formation in six out of 10 rats treated with BMP-7 activated fat grafts. Two of the defects were bridged. By contrast, femora of the control group receiving unmodified fat did not display signs of osseous healing. BMP-7 gene activated fat treatment led to a significantly higher bone volume (11.18 ± 9.48 mm(3) ) than treatment with unmodified fat grafts (3.19 ± 1.68 mm(3) ) (p = 0.008).ConclusionsImplantation of BMP-7 gene activated fat tissue fragments can elicit regeneration of large bone defects in rats and could become a clinically expeditious strategy for in vivo bone tissue engineering. However, gene expression must be improved in order to reliably induce osseous bridging of critical-size bone defects. Copyright © 2016 John Wiley & Sons, Ltd.Copyright © 2016 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…