• The Journal of physiology · Feb 2017

    Evidence of viscerally-mediated cold-defence thermoeffector responses in man.

    • Nathan B Morris, Davide Filingeri, Mark Halaki, and Ollie Jay.
    • Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, NSW, Australia.
    • J. Physiol. (Lond.). 2017 Feb 15; 595 (4): 1201-1212.

    Key PointsVisceral thermoreceptors that modify thermoregulatory responses are widely accepted in animal but not human thermoregulation models. Recently, we have provided evidence of viscerally-mediated sweating alterations in humans during exercise brought about by warm and cool fluid ingestion. In the present study, we characterize the modification of shivering and whole-body thermal sensation during cold stress following the administration of a graded thermal stimuli delivered to the stomach via fluid ingestion at 52, 37, 22 and 7°C. Despite no differences in core and skin temperature, fluid ingestion at 52°C rapidly decreased shivering and sensations of cold compared to 37°C, whereas fluid ingestion at 22 and 7°C led to equivalent increases in these responses. Warm and cold fluid ingestion independently modifies cold defence thermoeffector responses, supporting the presence of visceral thermoreceptors in humans. However, the cold-defence thermoeffector response patterns differed from previously identified hot-defence thermoeffectors.AbstractSudomotor activity is modified by both warm and cold fluid ingestion during heat stress, independently of differences in core and skin temperatures, suggesting independent viscerally-mediated modification of thermoeffectors. The present study aimed to determine whether visceral thermoreceptors modify shivering responses to cold stress. Ten males (mean ± SD: age 27 ± 5 years; height 1.73 ± 0.06 m, weight 78.4 ± 10.7 kg) underwent whole-body cooling via a water perfusion suit at 5°C, on four occasions, to induce a steady-state shivering response, at which point two aliquots of 1.5 ml kg-1 (SML) and 3.0 ml kg-1 (LRG), separated by 20 min, of water at 7, 22, 37 or 52°C were ingested. Rectal, mean skin and mean body temperature (Tb ), electromyographic activity (EMG), metabolic rate (M) and whole-body thermal sensation on a visual analogue scale (WBTS) ranging from 0 mm (very cold) to 200 mm (very hot) were all measured throughout. Tb was not different between all fluid temperatures following SML fluid ingestion (7°C: 35.7 ± 0.5°C; 22°C: 35.6 ± 0.5°C; 37°C: 35.5 ± 0.4°C; 52°C: 35.5 ± 0.4°C; P = 0.27) or LRG fluid ingestion (7°C: 35.3 ± 0.6°C; 22°C: 35.3 ± 0.5°C; 37°C: 35.2 ± 0.5°C; 52°C: 35.3 ± 0.5°C; P = 0.99). With SML fluid ingestion, greater metabolic rates and cooler thermal sensations were observed with ingestion at 7°C (M: 179 ± 55 W, WBTS: 29 ± 21 mm) compared to 52°C (M: 164 ± 34 W, WBTS: 51 ± 28 mm; all P < 0.05). With LRG ingestion, compared to shivering and thermal sensations with ingestion at 37°C (M: 215 ± 47 W, EMG: 3.9 ± 2.5% MVC, WBTS: 33 ± 2 mm), values were different (all P < 0.05) following ingestion at 7°C (M: 269 ± 77 W, EMG: 5.5 ± 0.9% MVC, WBTS: 14 ± 12 mm), 22°C (M: 270 ± 86 W, EMG: 5.6 ± 1.0% MVC, WBTS: 18 ± 19 mm) and 52°C (M: 179 ± 34 W, EMG: 3.3 ± 2.1% MVC, WBTS: 53 ± 28 mm). In conclusion, fluid ingestion at 52°C decreased shivering and the sensation of coolness, whereas fluid ingestion at 22 and 7°C increased shivering and sensations of coolness to similar levels, independently of core and skin temperature.© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.