• Physical therapy · Sep 2019

    Transcutaneous Electrical Nerve Stimulation Reduces Knee Osteoarthritic Pain by Inhibiting Spinal Glial Cells in Rats.

    • Suk-Chan Hahm, Eseul Song, Hochung Jeon, Young Wook Yoon, and Junesun Kim.
    • Graduate School of Integrative Medicine, CHA University, Seongnam, Republic of Korea.
    • Phys Ther. 2019 Sep 1; 99 (9): 1211-1223.

    BackgroundTranscutaneous electrical nerve stimulation (TENS) is commonly used for pain control. However, the effects of TENS on osteoarthritis (OA) pain and potential underlying mechanisms remain unclear.ObjectiveThe objective of this study was to investigate the effect of TENS on OA pain treatment and underlying mechanisms related to glial cell inhibition.DesignThis was an experimental study.MethodsOA was induced by injection of monosodium iodoacetate into the synovial space of the right knee joint of rats. High-frequency (HF) TENS (100 Hz), low-frequency (LF) TENS (4 Hz), or sham TENS was applied to the ipsilateral knee joint for 20 minutes. Paw withdrawal threshold (PWT), weight bearing, and knee bend score (KBS) were measured. Immunohistochemistry for microglia and astrocytes was performed with L3 to L5 spinal segment samples. To investigate the effects of glial inhibition on OA pain, minocycline, l-α-aminoadipate, or artificial cerebrospinal fluid was injected intrathecally, and PWT and KBS were measured.ResultsCompared with sham TENS, both HF TENS and LF TENS significantly increased PWT, decreased KBS, and inhibited activated microglia in the L3 to L5 segments but did not decrease the total number of microglia, except in the L4 segment (HF TENS). Astrocyte expression was significantly decreased in the L3 to L5 segments following LF TENS and in the L3 segment following HF TENS. Compared with artificial cerebrospinal fluid, both minocycline and l-α-aminoadipate increased PWT and decreased KBS.LimitationsThese results cannot be generalized to humans.ConclusionsTENS alleviates OA pain in rats by inhibiting activated microglia and reducing astrocyte expression in the spinal cord. Although these results may not be generalizable to chronic pain in patients with OA, within the limitation of the experimental animal model used in the present study, they suggest a possible mechanism and preclinical evidence supporting further experimentation or clinical use of TENS in humans.© 2019 American Physical Therapy Association.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…