• Bmc Med · Aug 2020

    Spatial modes for transmission of chikungunya virus during a large chikungunya outbreak in Italy: a modeling analysis.

    • Giorgio Guzzetta, Francesco Vairo, Alessia Mammone, Simone Lanini, Piero Poletti, Mattia Manica, Roberto Rosa, Beniamino Caputo, Angelo Solimini, Alessandra Della Torre, Paola Scognamiglio, Alimuddin Zumla, Giuseppe Ippolito, and Stefano Merler.
    • Center for Information Technology, Fondazione Bruno Kessler, Trento, Italy.
    • Bmc Med. 2020 Aug 7; 18 (1): 226.

    BackgroundThe spatial spread of many mosquito-borne diseases occurs by focal spread at the scale of a few hundred meters and over longer distances due to human mobility. The relative contributions of different spatial scales for transmission of chikungunya virus require definition to improve outbreak vector control recommendations.MethodsWe analyzed data from a large chikungunya outbreak mediated by the mosquito Aedes albopictus in the Lazio region, Italy, consisting of 414 reported human cases between June and November 2017. Using dates of symptom onset, geographic coordinates of residence, and information from epidemiological questionnaires, we reconstructed transmission chains related to that outbreak.ResultsFocal spread (within 1 km) accounted for 54.9% of all cases, 15.8% were transmitted at a local scale (1-15 km) and the remaining 29.3% were exported from the main areas of chikungunya circulation in Lazio to longer distances such as Rome and other geographical areas. Seventy percent of focal infections (corresponding to 38% of the total 414 cases) were transmitted within a distance of 200 m (the buffer distance adopted by the national guidelines for insecticide spraying). Two main epidemic clusters were identified, with a radius expanding at a rate of 300-600 m per month. The majority of exported cases resulted in either sporadic or no further transmission in the region.ConclusionsEvidence suggest that human mobility contributes to seeding a relevant number of secondary cases and new foci of transmission over several kilometers. Reactive vector control based on current guidelines might allow a significant number of secondary clusters in untreated areas, especially if the outbreak is not detected early. Existing policies and guidelines for control during outbreaks should recommend the prioritization of preventive measures in neighboring territories with known mobility flows to the main areas of transmission.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…