• Magn Reson Imaging · Dec 2004

    Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG.

    • Laura Astolfi, Febo Cincotti, Donatella Mattia, Serenella Salinari, Claudio Babiloni, Alessandra Basilisco, Paolo Maria Rossini, Lei Ding, Ying Ni, Bin He, Maria Grazia Marciani, and Fabio Babiloni.
    • Dipartimento di Informatica e Sistemistica, Università "La Sapienza", 00185, Rome, Italy. laura.astolfi@uniroma1.it
    • Magn Reson Imaging. 2004 Dec 1; 22 (10): 1457-70.

    AbstractDifferent brain imaging devices are presently available to provide images of the human functional cortical activity, based on hemodynamic, metabolic or electromagnetic measurements. However, static images of brain regions activated during particular tasks do not convey the information of how these regions are interconnected. The concept of brain connectivity plays a central role in the neuroscience, and different definitions of connectivity, functional and effective, have been adopted in literature. While the functional connectivity is defined as the temporal coherence among the activities of different brain areas, the effective connectivity is defined as the simplest brain circuit that would produce the same temporal relationship as observed experimentally among cortical sites. The structural equation modeling (SEM) is the most used method to estimate effective connectivity in neuroscience, and its typical application is on data related to brain hemodynamic behavior tested by functional magnetic resonance imaging (fMRI), whereas the directed transfer function (DTF) method is a frequency-domain approach based on both a multivariate autoregressive (MVAR) modeling of time series and on the concept of Granger causality. This study presents advanced methods for the estimation of cortical connectivity by applying SEM and DTF on the cortical signals estimated from high-resolution electroencephalography (EEG) recordings, since these signals exhibit a higher spatial resolution than conventional cerebral electromagnetic measures. To estimate correctly the cortical signals, we used a subject's multicompartment head model (scalp, skull, dura mater, cortex) constructed from individual MRI, a distributed source model and a regularized linear inverse source estimates of cortical current density. Before the application of SEM and DTF methodology to the cortical waveforms estimated from high-resolution EEG data, we performed a simulation study, in which different main factors (signal-to-noise ratio, SNR, and simulated cortical activity duration, LENGTH) were systematically manipulated in the generation of test signals, and the errors in the estimated connectivity were evaluated by the analysis of variance (ANOVA). The statistical analysis returned that during simulations, both SEM and DTF estimators were able to correctly estimate the imposed connectivity patterns under reasonable operative conditions, that is, when data exhibit an SNR of at least 3 and a LENGTH of at least 75 s of nonconsecutive EEG recordings at 64 Hz of sampling rate. Hence, effective and functional connectivity patterns of cortical activity can be effectively estimated under general conditions met in any practical EEG recordings, by combining high-resolution EEG techniques and linear inverse estimation with SEM or DTF methods. We conclude that the estimation of cortical connectivity can be performed not only with hemodynamic measurements, but also with EEG signals treated with advanced computational techniques.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.