• Journal of neurosurgery · Aug 2021

    Raman spectroscopy to differentiate between fresh tissue samples of glioma and normal brain: a comparison with 5-ALA-induced fluorescence-guided surgery.

    • Laurent J Livermore, Martin Isabelle, Ian M Bell, Oliver Edgar, Natalie L Voets, Richard Stacey, Olaf Ansorge, Claire Vallance, and Puneet Plaha.
    • 1Nuffield Department of Clinical Neurosciences, and.
    • J. Neurosurg. 2021 Aug 1; 135 (2): 469479469-479.

    ObjectiveRaman spectroscopy is a biophotonic tool that can be used to differentiate between different tissue types. It is nondestructive and no sample preparation is required. The aim of this study was to evaluate the ability of Raman spectroscopy to differentiate between glioma and normal brain when using fresh biopsy samples and, in the case of glioblastomas, to compare the performance of Raman spectroscopy to predict the presence or absence of tumor with that of 5-aminolevulinic acid (5-ALA)-induced fluorescence.MethodsA principal component analysis (PCA)-fed linear discriminant analysis (LDA) machine learning predictive model was built using Raman spectra, acquired ex vivo, from fresh tissue samples of 62 patients with glioma and 11 glioma-free brain samples from individuals undergoing temporal lobectomy for epilepsy. This model was then used to classify Raman spectra from fresh biopsies from resection cavities after functional guided, supramaximal glioma resection. In cases of glioblastoma, 5-ALA-induced fluorescence at the resection cavity biopsy site was recorded, and this was compared with the Raman spectral model prediction for the presence of tumor.ResultsThe PCA-LDA predictive model demonstrated 0.96 sensitivity, 0.99 specificity, and 0.99 accuracy for differentiating tumor from normal brain. Twenty-three resection cavity biopsies were taken from 8 patients after supramaximal resection (6 glioblastomas, 2 oligodendrogliomas). Raman spectroscopy showed 1.00 sensitivity, 1.00 specificity, and 1.00 accuracy for predicting tumor versus normal brain in these samples. In the glioblastoma cases, where 5-ALA-induced fluorescence was used, the performance of Raman spectroscopy was significantly better than the predictive value of 5-ALA-induced fluorescence, which showed 0.07 sensitivity, 1.00 specificity, and 0.24 accuracy (p = 0.0009).ConclusionsRaman spectroscopy can accurately classify fresh tissue samples into tumor versus normal brain and is superior to 5-ALA-induced fluorescence. Raman spectroscopy could become an important intraoperative tool used in conjunction with 5-ALA-induced fluorescence to guide extent of resection in glioma surgery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.