• Brain · Jul 2011

    Review

    Enhancing remyelination in disease--can we wrap it up?

    • Mark R Kotter, Christine Stadelmann, and Hans-Peter Hartung.
    • Department of Clinical Neurosciences, MRC Centre for Stem Cells and Regenerative Medicine, University of Cambridge, Addenbrooke's Hospital, Box 167, Hills Road, Cambridge CB22QQ, UK. mrk25@cam.ac.uk
    • Brain. 2011 Jul 1; 134 (Pt 7): 1882-900.

    AbstractDemyelinating disorders of the central nervous system are among the most crippling neurological diseases affecting patients at various stages of life. In the most prominent demyelinating disease, multiple sclerosis, the regeneration of myelin sheaths often fails due to a default of the resident stem/precursor cells (oligodendrocyte precursor cells) to differentiate into mature myelin forming cells. Significant advances have been made in our understanding of the molecular and cellular processes involved in remyelination. Furthermore, important insight has been gained from studies investigating the interaction of stem/precursor cells with the distinct environment of demyelinating lesions. These suggest that successful regeneration depends on a signalling environment conducive to remyelination, which is provided in the context of acute inflammation. However, multiple sclerosis lesions also contain factors that inhibit the differentiation of oligodendrocyte precursor cells into myelinating oligodendrocytes. The pattern by which remyelination inducers and inhibitors are expressed in multiple sclerosis lesions may determine a window of opportunity during which oligodendrocyte precursor cells can successfully differentiate. As the first molecules aiming at promoting remyelination are about to enter clinical trials, this review critically evaluates recent advances in our understanding of the biology of oligodendrocyte precursor cells and of the stage-dependent molecular pathology of multiple sclerosis lesions relevant to the regeneration of myelin sheaths. We propose a model that may help to provide cues for how remyelination can be therapeutically enhanced in clinical disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…