• Korean J Radiol · Aug 2020

    Development and Validation of a Prognostic Nomogram Based on Clinical and CT Features for Adverse Outcome Prediction in Patients with COVID-19.

    • Yingyan Zheng, Anling Xiao, Xiangrong Yu, Yajing Zhao, Yiping Lu, Xuanxuan Li, Nan Mei, Dejun She, Dongdong Wang, Daoying Geng, and Bo Yin.
    • Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
    • Korean J Radiol. 2020 Aug 1; 21 (8): 1007-1017.

    ObjectiveThe purpose of our study was to investigate the predictive abilities of clinical and computed tomography (CT) features for outcome prediction in patients with coronavirus disease (COVID-19).Materials And MethodsThe clinical and CT data of 238 patients with laboratory-confirmed COVID-19 in our two hospitals were retrospectively analyzed. One hundred sixty-six patients (103 males; age 43.8 ± 12.3 years) were allocated in the training cohort and 72 patients (38 males; age 45.1 ± 15.8 years) from another independent hospital were assigned in the validation cohort. The primary composite endpoint was admission to an intensive care unit, use of mechanical ventilation, or death. Univariate and multivariate Cox proportional hazard analyses were performed to identify independent predictors. A nomogram was constructed based on the combination of clinical and CT features, and its prognostic performance was externally tested in the validation group. The predictive value of the combined model was compared with models built on the clinical and radiological attributes alone.ResultsOverall, 35 infected patients (21.1%) in the training cohort and 10 patients (13.9%) in the validation cohort experienced adverse outcomes. Underlying comorbidity (hazard ratio [HR], 3.35; 95% confidence interval [CI], 1.67-6.71; p < 0.001), lymphocyte count (HR, 0.12; 95% CI, 0.04-0.38; p < 0.001) and crazy-paving sign (HR, 2.15; 95% CI, 1.03-4.48; p = 0.042) were the independent factors. The nomogram displayed a concordance index (C-index) of 0.82 (95% CI, 0.76-0.88), and its prognostic value was confirmed in the validation cohort with a C-index of 0.89 (95% CI, 0.82-0.96). The combined model provided the best performance over the clinical or radiological model (p < 0.050).ConclusionUnderlying comorbidity, lymphocyte count and crazy-paving sign were independent predictors of adverse outcomes. The prognostic nomogram based on the combination of clinical and CT features could be a useful tool for predicting adverse outcomes of patients with COVID-19.Copyright © 2020 The Korean Society of Radiology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…