• Med Phys · Dec 2019

    Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.

    • Kaichao Liang, Li Zhang, Hongkai Yang, Yirong Yang, Zhiqiang Chen, and Yuxiang Xing.
    • Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.
    • Med Phys. 2019 Dec 1; 46 (12): e823-e834.

    PurposeMetal artifact is a quite common problem in diagnostic dental computed tomography (CT) images. Due to the high attenuation of heavy materials such as metal, severe global artifacts can occur in reconstructions. Typical metal artifact reduction (MAR) techniques segment out the metal regions and estimate the corrupted projection data by various interpolation methods. However, interpolations are not accurate and introduce new artifacts or even deform the teeth in the reconstructed image. This work presents a new strategy to take advantage of the power of deep learning for metal artifact reduction.MethodThe analysis first uses coarse reconstructions from simulated locally interpolated data affected by metal fillings as a starting point. A deep learning network is then trained using the simulated data and applied to practical data. Thus, an easily implemented three-step MAR method is formed: Firstly, use the acquired projection data to create a preliminary image reconstruction with linearly interpolated data for the metal-related projections. Secondly, a deep learning network is used to remove the artifacts from the linear interpolation and recover the nonmetal region information. Thirdly, the method adds the ROI reconstruction of the metal regions. The structures behind the shading artifacts in the direct filtered back-projection (FBP) reconstruction can be partially recovered by interpolation-based MAR (I-MAR) with the network further correcting for interpolation errors. The key to this method is that the linear interpolation reconstruction errors can be easily simulated to train a network and the effectiveness of the network can be easily generalized to I-MAR results in real situations.ResultsWe trained a network with a simulation dataset and validated the network against a separate simulation dataset. Then, the network was tested using simulation data that did not overlap with the training/validation datasets and real patient datasets. Both tests gave encouraging results with accurate tooth structure recovery and few artifacts. The relative root mean square error and structure similarity index method indexes were significantly improved in the tests. The method was also evaluated by two experienced dentists who gave positive evaluations.ConclusionsThis work presents a strategy to build a transferable learning from simulations to practical systems for metal artifact reduction using a supervised deep learning method. The system transforms the MAR analyses to an interpolation-artifact reduction problem to recover structural details from the coarse interpolation reconstruction. In this way, training data from simulations with ground truth labels can easily model the similar features in real data with I-MAR as the bridge. The network can seamlessly optimize both simulations and real data. The whole method is easily implemented with little computational cost. Test results demonstrated that this is an effective MAR method applicable to practical dental CT systems.© 2019 American Association of Physicists in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.