-
Journal of neurotrauma · Apr 2021
Observational StudyPredicting Post-Concussion Symptom Recovery in Adolescents Using a Novel AI.
- David E Fleck, Nicholas Ernest, Ruth Asch, Caleb M Adler, Kelly Cohen, Weihong Yuan, Brandon Kunkel, Robert Krikorian, Shari L Wade, and Lynn Babcock.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
- J. Neurotrauma. 2021 Apr 1; 38 (7): 830-836.
AbstractThis pilot study explores the possibility of predicting post-concussion symptom recovery at one week post-injury using only objective diffusion tensor imaging (DTI) data inputs to a novel artificial intelligence (AI) system composed of Genetic Fuzzy Trees (GFT). Forty-three adolescents age 11 to 16 years with either mild traumatic brain injury or traumatic orthopedic injury were enrolled on presentation to the emergency department. Participants received a DTI scan three days post-injury, and their symptoms were assessed by the Post-Concussion Symptom Scale (PCSS) at 6 h and one week post-injury. The GFT system was trained using one-week total PCSS scores, 48 volumetric magnetic resonance imaging inputs, and 192 DTI inputs per participant over 225 training runs. Each training run contained a randomly selected 80% of the total sample followed by a 20% validation run. Over a different randomly selected sample distribution, GFT was also compared with six common classification methods. The cascading GFT structure controlled an effectively infinite solution space that classified participants as recovered or not recovered significantly better than chance. It demonstrated 100% and 62% classification accuracy in training and validation, respectively, better than any of the six comparison methods. Recovery sensitivity and specificity were 59% and 65% in the GFT validation set, respectively. These results provide initial evidence for the effectiveness of a GFT system to make clinical predictions of trauma symptom recovery using objective brain measures. Although clinical and research applications will necessitate additional optimization of the system, these results highlight the future promise of AI in acute care.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.