• Mol. Cell. Endocrinol. · Oct 2018

    Endogenous H2S resists mitochondria-mediated apoptosis in the adrenal glands via ATP5A1 S-sulfhydration in male mice.

    • Changnan Wang, Jiankui Du, Shufang Du, Yujian Liu, Dongxia Li, Xiaoyan Zhu, and Xin Ni.
    • Department of Physiology, Second Military Medical University, Shanghai, China.
    • Mol. Cell. Endocrinol. 2018 Oct 15; 474: 65-73.

    AbstractIn a previous study, we showed that endogenous hydrogen sulfide (H2S) plays a key role in the maintenance of intact adrenal cortex function via the protection of mitochondrial function during endoxemia. We further investigated whether mitochondria-mediated apoptosis is involved in H2S protection of adrenal function. LPS treatment resulted in mitochondria-mediated apoptosis in the adrenal glands of male mice, and these effects were prevented by the H2S donor GYY4137. In the model of Y1 cells, the LPS-induced mitochondria-mediated apoptosis and blunt response to ACTH were rescued by GYY4137. The H2S-generating enzyme cystathionine-β-synthase (CBS) knockout heterozygous (CBS+/-) mice showed mitochondria-mediated apoptosis in the adrenal gland and adrenal insufficiency. GYY4137 treatment restored adrenal function and eliminated mitochondria-mediated apoptosis. Maleimide assay combined with mass spectrometry analysis showed that a number of proteins in mitochondria were S-sulfhydrated in the adrenal gland. ATP5A1 was further confirmed as S-sulfhydrated using a modified biotin switch assay. The level of S-sulfhydrated ATP5A1 was decreased in the adrenal gland of endotoxemic and CBS+/- mice, which was restored by GYY4137. ATP5A1 was identified as sulfhydrated at cysteine 244 by H2S. Overexpression of the cysteine 244 mutant ATP5A1 in Y1 cells resulted in a loss of LPS-induced mitochondria-mediated apoptosis and GYY4137 restoration of LPS-induced hyporesponsiveness to ACTH. Collectively, the present study revealed that decreased H2S generation leads to mitochondrial-mediated apoptosis in the adrenal cortex and a blunt response to ACTH. S-sulfhydration of ATP5A1 at cysteine 244 is an important molecular mechanism by which H2S maintains mitochondrial function and steroidogenesis in the adrenal glands.Copyright © 2018 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.