• Military medicine · Nov 2021

    Gait Retraining Improves Running Impact Loading and Function in Previously Injured U.S. Military Cadets: A Pilot Study.

    • Erin M Miller, Michael S Crowell, Jamie B Morris, John S Mason, Rebeca Zifchock, and Donald L Goss.
    • Keller Army Community Hospital Division I Sports Physical Therapy Fellowship, Keller Army Community Hospital, West Point, NY 10996, USA.
    • Mil Med. 2021 Nov 2; 186 (11-12): e1077-e1087.

    IntroductionRunning-related musculoskeletal injury (RRI) among U.S. military service members continues to negatively impact force readiness. There is a paucity of evidence supporting the use of RRI interventions, such as gait retraining, in military populations. Gait retraining has demonstrated effectiveness in altering running biomechanics and reducing running load. The purpose of this pilot study was to investigate the clinical effect of a gait retraining intervention on a military cadet population recovering from a lower-extremity RRI.Materials And MethodsThe study design is a pilot study. Before study initiation, institutional approval was granted by the Keller Army Community Hospital Office of Human Research Protections. Nine rearfoot strike (RFS) runners recovering from a lower-extremity RRI at the U.S. Military Academy were prospectively enrolled and completed a gait retraining intervention. Participants followed-up with their assigned medical provider 6 times over 10 weeks for a clinical evaluation and running gait retraining. Gait retraining was provided utilizing verbal, visual, and audio feedback to facilitate a change in running foot strike pattern from RFS to non-rearfoot strike (NRFS) and increase preferred running step rate. At pre-intervention and post-intervention running ground reaction forces (GRF) [average vertical loading rate (AVLR), peak vertical GRF], kinematic (foot strike pattern) and temporospatial (step rate, contact time) data were collected. Participants self-reported their level of function via the Single Assessment Numeric Evaluation, Patient-Specific Functional Scale, and total weekly running minutes. Paired samples t-tests and Wilcoxon signed rank tests were used to compare pre- and post-intervention measures of interest. Values of P < .05 were considered statistically significant.ResultsNine patients completed the 10-week intervention (age, 20.3 ± 2.2 years; height, 170.7 ± 13.8 cm; mass, 71.7 ± 14.9 kg; duration of injury symptoms, 192.4 ± 345.5 days; running speed, 2.8 ± 0.38 m/s). All nine runners (100%) transitioned from RFS to NRFS. Left AVLR significantly decreased from 60.3 ± 17.0 bodyweight per second (BW/s) before intervention to 25.9 ± 9.1 BW/s after intervention (P = 0.008; effect size (d) = 2.5). Right AVLR significantly decreased from 60.5 ± 15.7 BW/s to 32.3 ± 12.5 BW/s (P < .001; d = 2.0). Similarly, step rate increased from 169.9 ± 10.0 steps per minute (steps/min) before intervention to 180.5 ± 6.5 steps/min following intervention (P = .005; d = 1.3). Single Assessment Numeric Evaluation scores improved significantly from 75 ± 23 to 100 ± 8 (P = .008; d = 1.5) and Patient-Specific Functional Scale values significantly improved from 6 ± 2.3 to 9.5 ± 1.6 (P = .007; d = 1.8) after intervention. Peak vertical GRF (left, P = .127, d = 0.42; right, P = .052, d = 0.53), contact time (left, P = 0.127, d = 0.42; right, P = 0.052, d = 0.53), and total weekly continuous running minutes (P = 0.095, d = 0.80) remained unchanged at post-intervention. All 9 patients remained injury free upon a 6-month medical record review.ConclusionsIn 9 military service members with a RRI, a 10-week NRFS gait retraining intervention was effective in improving running mechanics and measures of function. Patients remained injury-free 6 months following enrollment. The outcomes of this pilot study suggest that individuals recovering from certain lower-extremity RRIs may benefit from transitioning to an NRFS running pattern.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.