• Annals of surgery · Jul 2022

    Hyperspectral Imaging (HSI) of Human Kidney Allografts.

    • Robert Sucher, Tristan Wagner, Hannes Köhler, Elisabeth Sucher, Hanna Quice, Sebastian Recknagel, Andri Lederer, Hans Michael Hau, Sebastian Rademacher, Stefan Schneeberger, Gerald Brandacher, Ines Gockel, and Daniel Seehofer.
    • Department of Visceral, Transplant-, Thoracic- and Vascular Surgery, Division of Hepatobiliary Surgery and Visceral Transplant Surgery, University Clinic Leipzig.
    • Ann. Surg. 2022 Jul 1; 276 (1): e48e55e48-e55.

    ObjectiveAim of our study was to test a noninvasive HSI technique as an intraoperative real time assessment tool for deceased donor kidney quality and function in human kidney allotransplantation.Summary Of Background DataHSI is capable to deliver quantitative diagnostic information about tissue pathology, morphology, and composition, based on the spectral characteristics of the investigated tissue. Because tools for objective intraoperative graft viability and performance assessment are lacking, we applied this novel technique to human kidney transplantation.MethodsHyperspectral images of distinct components of kidney allografts (parenchyma, ureter) were acquired 15 and 45 minutes after reperfusion and subsequently analyzed using specialized HSI acquisition software capable to compute oxygen saturation levels (StO2), near infrared perfusion indices (NIR), organ hemoglobin indices, and tissue water indices of explored tissues.ResultsSeventeen kidney transplants were analyzed. Median recipient and donor age were 55 years. Cold ischemia time was 10.8 ± 4.1 hours and anastomosis time was 35 ± 7 minutes (mean ± standard deviation). Two patients (11.8%) developed delayed graft function (DGF). cold ischemia time was significantly longer (18.6 ± 1.6) in patients with DGF (P < 0.01). Kidneys with DGF furthermore displayed significant lower StO2 (P = 0.02) and NIR perfusion indices, 15 minutes after reperfusion (P < 0.01). Transplant ureters displayed a significant decrease of NIR perfusion with increased distance to the renal pelvis, identifying well and poor perfused segments.ConclusionIntraoperative HSI is feasible and meaningful to predict DGF in renal allografts. Furthermore, it can be utilized for image guided surgery, providing information about tissue oxygenation, perfusion, hemoglobin concentration, and water concentration, hence allowing intraoperative viability assessment of the kidney parenchyma and the ureter.Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…