• Journal of neurotrauma · Apr 2021

    Observational Study

    Predicting the Individual Treatment Effect of Neurosurgery for Patients with Traumatic Brain Injury in the Low-Resource Setting: A Machine Learning Approach in Uganda.

    • Syed M Adil, Cyrus Elahi, Robert Gramer, Charis A Spears, Anthony T Fuller, Michael M Haglund, and Timothy W Dunn.
    • Division of Global Neurosurgery and Neurology, Duke University Medical Center, Durham, North Carolina, USA.
    • J. Neurotrauma. 2021 Apr 1; 38 (7): 928-939.

    AbstractTraumatic brain injury (TBI) disproportionately affects low- and middle-income countries (LMICs). In these low-resource settings, effective triage of patients with TBI-including the decision of whether or not to perform neurosurgery-is critical in optimizing patient outcomes and healthcare resource utilization. Machine learning may allow for effective predictions of patient outcomes both with and without surgery. Data from patients with TBI was collected prospectively at Mulago National Referral Hospital in Kampala, Uganda, from 2016 to 2019. One linear and six non-linear machine learning models were designed to predict good versus poor outcome near hospital discharge and internally validated using nested five-fold cross-validation. The 13 predictors included clinical variables easily acquired on admission and whether or not the patient received surgery. Using an elastic-net regularized logistic regression model (GLMnet), with predictions calibrated using Platt scaling, the probability of poor outcome was calculated for each patient both with and without surgery (with the difference quantifying the "individual treatment effect," ITE). Relative ITE represents the percent reduction in chance of poor outcome, equaling this ITE divided by the probability of poor outcome with no surgery. Ultimately, 1766 patients were included. Areas under the receiver operating characteristic curve (AUROCs) ranged from 83.1% (single C5.0 ruleset) to 88.5% (random forest), with the GLMnet at 87.5%. The two variables promoting good outcomes in the GLMnet model were high Glasgow Coma Scale score and receiving surgery. For the subgroup not receiving surgery, the median relative ITE was 42.9% (interquartile range [IQR], 32.7% to 53.5%); similarly, in those receiving surgery, it was 43.2% (IQR, 32.9% to 54.3%). We provide the first machine learning-based model to predict TBI outcomes with and without surgery in LMICs, thus enabling more effective surgical decision making in the resource-limited setting. Predicted ITE similarity between surgical and non-surgical groups suggests that, currently, patients are not being chosen optimally for neurosurgical intervention. Our clinical decision aid has the potential to improve outcomes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.