• AJNR Am J Neuroradiol · Jan 2000

    Comparative Study Clinical Trial

    In vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparison with oxygen tension measurements.

    • J M Star-Lack, E Adalsteinsson, M F Adam, D J Terris, H A Pinto, J M Brown, and D M Spielman.
    • Lucas MRS Imaging Center, Department of Radiology, Stanford University, CA 94305, USA.
    • AJNR Am J Neuroradiol. 2000 Jan 1; 21 (1): 183-93.

    Background And PurposeCurrent diagnostic methods for head and neck metastasis are limited for monitoring recurrence and assessing oxygenation. 1H MR spectroscopy (1H MRS) provides a noninvasive means of determining the chemical composition of tissue and thus has a unique potential as a method for localizing and characterizing cancer. The purposes of this investigation were to measure 1H spectral intensities of total choline (Cho), creatine (Cr), and lactate (Lac) in vivo in human lymph node metastases of head and neck cancer for comparison with normal muscle tissue and to examine relationships between metabolite signal intensities and tissue oxygenation status.MethodsVolume-localized Lac-edited MRS at 1.5 T was performed in vivo on the lymph node metastases of 14 patients whose conditions were untreated and who had primary occurrences of squamous cell carcinoma. MRS measurements were acquired also from the neck muscle tissue of six healthy volunteers and a subset of the patients. Peak areas of Cho, Cr, and Lac were calculated. Tissue oxygenation (pO2) within the abnormal lymph nodes was measured independently using an Eppendorf polarographic oxygen electrode.ResultsCho:Cr ratios were significantly higher in the nodes than in muscle tissue (node Cho:Cr = 2.9 +/- 1.6, muscle Cho:Cr = 0.55 +/- 0.21, P = .0006). Lac was significantly higher in cancer tissue than in muscle (P = .01) and, in the nodes, showed a moderately negative correlation with median pO2 (r = -.76) over a range of approximately 0 to 30 mm Hg. Nodes with oxygenation values less than 10 mm Hg had approximately twice the Lac signal intensity as did nodes with oxygenation values greater than 10 mm Hg (P = .01). Cho signal intensity was not well correlated with pO2 (r = -.46) but seemed to decrease at higher oxygenation levels (>20 mm Hg).Conclusion1H MRS may be useful for differentiating metastatic head and neck cancer from normal muscular tissue and may allow for the possibility of assessing oxygenation. Potential clinical applications include the staging and monitoring of treatment.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.