• Annals of medicine · Dec 2021

    Increased expression of hypoxia-induced factor 1α mRNA and its related genes in myeloid blood cells from critically ill COVID-19 patients.

    • Keiko Taniguchi-Ponciano, Eduardo Vadillo, Héctor Mayani, César Raúl Gonzalez-Bonilla, Javier Torres, Abraham Majluf, Guillermo Flores-Padilla, Niels Wacher-Rodarte, Juan Carlos Galan, Eduardo Ferat-Osorio, Francisco Blanco-Favela, Constantino Lopez-Macias, Aldo Ferreira-Hermosillo, Claudia Ramirez-Renteria, Eduardo Peña-Martínez, Gloria Silva-Román, Sandra Vela-Patiño, Carlos Mata-Lozano, Roberto Carvente-Garcia, Lourdes Basurto-Acevedo, Renata Saucedo, Patricia Piña-Sanchez, Antonieta Chavez-Gonzalez, Daniel Marrero-Rodríguez, and Moisés Mercado.
    • Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico.
    • Ann. Med. 2021 Dec 1; 53 (1): 197207197-207.

    BackgroundCOVID-19 counts 46 million people infected and killed more than 1.2 million. Hypoxaemia is one of the main clinical manifestations, especially in severe cases. HIF1α is a master transcription factor involved in the cellular response to oxygen levels. The immunopathogenesis of this severe form of COVID-19 is poorly understood.MethodsWe performed scRNAseq from leukocytes from five critically ill COVID-19 patients and characterized the expression of hypoxia-inducible factor1α and its transcriptionally regulated genes. Also performed metanalysis from the publicly available RNAseq data from COVID-19 bronchoalveolar cells.ResultsCritically-ill COVID-19 patients show a shift towards an immature myeloid profile in peripheral blood cells, including band neutrophils, immature monocytes, metamyelocytes, monocyte-macrophages, monocytoid precursors, and promyelocytes-myelocytes, together with mature monocytes and segmented neutrophils. May be the result of a physiological response known as emergency myelopoiesis. These cellular subsets and bronchoalveolar cells express HIF1α and their transcriptional targets related to inflammation (CXCL8, CXCR1, CXCR2, and CXCR4); virus sensing, (TLR2 and TLR4); and metabolism (SLC2A3, PFKFB3, PGK1, GAPDH and SOD2).ConclusionsThe up-regulation and participation of HIF1α in events such as inflammation, immunometabolism, and TLR make it a potential molecular marker for COVID-19 severity and, interestingly, could represent a potential target for molecular therapy. Key messages Critically ill COVID-19 patients show emergency myelopoiesis. HIF1α and its transcriptionally regulated genes are expressed in immature myeloid cells which could serve as molecular targets. HIF1α and its transcriptionally regulated genes is also expressed in lung cells from critically ill COVID-19 patients which may partially explain the hypoxia related events.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.