• Bmc Cancer · Jun 2019

    Artificial neural network models to predict nodal status in clinically node-negative breast cancer.

    • Looket Dihge, Mattias Ohlsson, Patrik Edén, Pär-Ola Bendahl, and Lisa Rydén.
    • Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden.
    • Bmc Cancer. 2019 Jun 21; 19 (1): 610.

    BackgroundSentinel lymph node biopsy (SLNB) is standard staging procedure for nodal status in breast cancer, but lacks therapeutic benefit for patients with benign sentinel nodes. For patients with positive sentinel nodes, individualized surgical strategies are applied depending on the extent of nodal involvement. Preoperative prediction of nodal status is thus important for individualizing axillary surgery avoiding unnecessary surgery. We aimed to predict nodal status in clinically node-negative breast cancer and identify candidates for SLNB omission by including patient-related and pathological characteristics into artificial neural network (ANN) models.MethodsPatients with primary breast cancer were consecutively included between January 1, 2009 and December 31, 2012 in a prospectively maintained pathology database. Clinical- and radiological data were extracted from patient's files and only clinically node-negative patients constituted the final study cohort. ANN-based models for nodal prediction were constructed including 15 risk variables for nodal status. Area under the receiver operating characteristic curve (AUC) and Hosmer-Lemeshow goodness-of-fit test (HL) were used to assess performance and calibration of three predictive ANN-based models for no lymph node metastasis (N0), metastases in 1-3 lymph nodes (N1) and metastases in ≥ 4 lymph nodes (N2). Linear regression models for nodal prediction were calculated for comparison.ResultsEight hundred patients (N0, n = 514; N1, n = 232; N2, n = 54) were included. Internally validated AUCs for N0 versus N+ was 0.740 (95% CI = 0.723-0.758); median HL was 9.869 (P = 0.274), for N1 versus N0, 0.705 (95% CI = 0.686-0.724; median HL: 7.421; P = 0.492) and for N2 versus N0 and N1, 0.747 (95% CI = 0.728-0.765; median HL: 9.220; P = 0.324). Tumor size and vascular invasion were top-ranked predictors of all three end-points, followed by estrogen receptor status and lobular cancer for prediction of N2. For each end-point, ANN models showed better discriminatory performance than multivariable logistic regression models. Accepting a false negative rate (FNR) of 10% for predicting N0 by the ANN model, SLNB could have been abstained in 27.25% of patients with clinically node-negative axilla.ConclusionsIn this retrospective study, ANN showed promising result as decision-supporting tools for estimating nodal disease. If prospectively validated, patients least likely to have nodal metastasis could be spared SLNB using predictive models.Trial RegistrationRegistered in the ISRCTN registry with study ID ISRCTN14341750 . Date of registration 23/11/2018. Retrospectively registered.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.