-
JMIR medical informatics · Oct 2016
Natural Language Processing-Enabled and Conventional Data Capture Methods for Input to Electronic Health Records: A Comparative Usability Study.
- David R Kaufman, Barbara Sheehan, Peter Stetson, Ashish R Bhatt, Adele I Field, Chirag Patel, and James Mark Maisel.
- Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ, United States.
- JMIR Med Inform. 2016 Oct 28; 4 (4): e35.
BackgroundThe process of documentation in electronic health records (EHRs) is known to be time consuming, inefficient, and cumbersome. The use of dictation coupled with manual transcription has become an increasingly common practice. In recent years, natural language processing (NLP)-enabled data capture has become a viable alternative for data entry. It enables the clinician to maintain control of the process and potentially reduce the documentation burden. The question remains how this NLP-enabled workflow will impact EHR usability and whether it can meet the structured data and other EHR requirements while enhancing the user's experience.ObjectiveThe objective of this study is evaluate the comparative effectiveness of an NLP-enabled data capture method using dictation and data extraction from transcribed documents (NLP Entry) in terms of documentation time, documentation quality, and usability versus standard EHR keyboard-and-mouse data entry.MethodsThis formative study investigated the results of using 4 combinations of NLP Entry and Standard Entry methods ("protocols") of EHR data capture. We compared a novel dictation-based protocol using MediSapien NLP (NLP-NLP) for structured data capture against a standard structured data capture protocol (Standard-Standard) as well as 2 novel hybrid protocols (NLP-Standard and Standard-NLP). The 31 participants included neurologists, cardiologists, and nephrologists. Participants generated 4 consultation or admission notes using 4 documentation protocols. We recorded the time on task, documentation quality (using the Physician Documentation Quality Instrument, PDQI-9), and usability of the documentation processes.ResultsA total of 118 notes were documented across the 3 subject areas. The NLP-NLP protocol required a median of 5.2 minutes per cardiology note, 7.3 minutes per nephrology note, and 8.5 minutes per neurology note compared with 16.9, 20.7, and 21.2 minutes, respectively, using the Standard-Standard protocol and 13.8, 21.3, and 18.7 minutes using the Standard-NLP protocol (1 of 2 hybrid methods). Using 8 out of 9 characteristics measured by the PDQI-9 instrument, the NLP-NLP protocol received a median quality score sum of 24.5; the Standard-Standard protocol received a median sum of 29; and the Standard-NLP protocol received a median sum of 29.5. The mean total score of the usability measure was 36.7 when the participants used the NLP-NLP protocol compared with 30.3 when they used the Standard-Standard protocol.ConclusionsIn this study, the feasibility of an approach to EHR data capture involving the application of NLP to transcribed dictation was demonstrated. This novel dictation-based approach has the potential to reduce the time required for documentation and improve usability while maintaining documentation quality. Future research will evaluate the NLP-based EHR data capture approach in a clinical setting. It is reasonable to assert that EHRs will increasingly use NLP-enabled data entry tools such as MediSapien NLP because they hold promise for enhancing the documentation process and end-user experience.©David R. Kaufman, Barbara Sheehan, Peter Stetson, Ashish R. Bhatt, Adele I. Field, Chirag Patel, James Mark Maisel. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 28.10.2016.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.