• Journal of neurotrauma · May 2021

    Brain perfusion bridges virtual-reality spatial behavior to TPH2 genotype for head acceleration events.

    • Yufen Chen, Amy A Herrold, Alexa E Walter, James L Reilly, Peter H Seidenberg, Eric A Nauman, Thomas Talavage, David J Vandenbergh, Semyon M Slobounov, and Hans C Breiter.
    • Center for Translational Imaging, Department of Radiology, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
    • J. Neurotrauma. 2021 May 15; 38 (10): 1368-1376.

    AbstractNeuroimaging demonstrates that athletes of collision sports can suffer significant changes to their brain in the absence of concussion, attributable to head acceleration event (HAE) exposure. In a sample of 24 male Division I collegiate football players, we examine the relationships between tryptophan hydroxylase 2 (TPH2), a gene involved in neurovascular function, regional cerebral blood flow (rCBF) measured by arterial spin labeling, and virtual reality (VR) motor performance, both pre-season and across a single football season. For the pre-season, TPH2 T-carriers showed lower rCBF in two left hemisphere foci (fusiform gyrus/thalamus/hippocampus and cerebellum) in association with higher (better performance) VR Reaction Time, a dynamic measure of sensory-motor reactivity and efficiency of visual-spatial processing. For TPH2 CC homozygotes, higher pre-season rCBF in these foci was associated with better performance on VR Reaction Time. A similar relationship was observed across the season, where TPH2 T-carriers showed improved VR Reaction Time associated with decreases in rCBF in the right hippocampus/amygdala, left middle temporal lobe, and left insula/putamen/pallidum. In contrast, TPH2 CC homozygotes showed improved VR Reaction Time associated with increases in rCBF in the same three clusters. These findings show that TPH2 T-carriers have an abnormal relationship between rCBF and the efficiency of visual-spatial processing that is exacerbated after a season of high-impact sports in the absence of diagnosable concussion. Such gene-environment interactions associated with behavioral changes after exposure to repetitive HAEs have been unrecognized with current clinical analytical tools and warrant further investigation. Our results demonstrate the importance of considering neurovascular factors along with traumatic axonal injury to study long-term effects of repetitive HAEs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.