• Annals of intensive care · Feb 2020

    Prone positioning monitored by electrical impedance tomography in patients with severe acute respiratory distress syndrome on veno-venous ECMO.

    • Guillaume Franchineau, Nicolas Bréchot, Guillaume Hekimian, Guillaume Lebreton, Simon Bourcier, Pierre Demondion, Loïc Le Guennec, Ania Nieszkowska, Charles-Edouard Luyt, Alain Combes, and Matthieu Schmidt.
    • INSERM, UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, 75651, Paris Cedex 13, France.
    • Ann Intensive Care. 2020 Feb 3; 10 (1): 12.

    BackgroundProne positioning (PP) during veno-venous ECMO is feasible, but its physiological effects have never been thoroughly evaluated. Our objectives were to describe, through electrical impedance tomography (EIT), the impact of PP on global and regional ventilation, and optimal PEEP level.MethodsA monocentric study conducted on ECMO-supported severe ARDS patients, ventilated in pressure-controlled mode, with 14-cmH2O driving pressure and EIT-based "optimal PEEP". Before, during and after a 16-h PP session, EIT-based distribution and variation of tidal impedance, VTdorsal/VTglobal ratio, end-expiratory lung impedance (EELI) and static compliance were collected. Subgroup analyses were performed in patients who increased their static compliance by ≥ 3 mL/cmH2O after 16 h of PP.ResultsFor all patients (n = 21), tidal volume and EELI were redistributed from ventral to dorsal regions during PP. EIT-based optimal PEEP was significantly lower in PP than in supine position. Median (IQR) optimal PEEP decreased from 14 (12-16) to 10 (8-14) cmH2O. Thirteen (62%) patients increased their static compliance by ≥ 3 mL/cmH2O after PP on ECMO. This subgroup had higher body mass index, more frequent viral pneumonia, shorter ECMO duration, and lower baseline VTdorsal/VTglobal ratio than patients with compliance ≤ 3 mL/cmH2O (P < 0.01).ConclusionAlthough baseline tidal volume distribution on EIT may predict static compliance improvement after PP on ECMO, our results support physiological benefits of PP in all ECMO patients, by modifying lung mechanics and potentially reducing VILI. Further studies, including a randomized-controlled trial, are now warranted to confirm potential PP benefits during ECMO.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…