-
- Neil Bhatia, Hari Trivedi, Nabile Safdar, and Marta E Heilbrun.
- Emory University School of Medicine, Atlanta, Georgia.
- J Am Coll Radiol. 2020 Nov 1; 17 (11): 1382-1387.
AbstractThe radiology workflow can be segmented into three large groups: pre-interpretative processes, interpretation, and postinterpretative processes. Each stage of this workflow represents quality improvement opportunities for artificial intelligence and machine learning. Although the focus of recent research has been targeted toward optimization of image interpretation, this article describes significant use cases for artificial intelligence in both the pre-interpretative and postinterpretative aspects of radiology. We provide examples of how current applications of AI for quality improvement purposes across the radiology workflow have been implemented and how further integration of these technologies can significantly improve clinical efficiency, reduce radiologist work burden, and ultimately optimize patient care and outcomes.Copyright © 2020 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.