• Phys Med Biol · Sep 2018

    Cascaded atrous convolution and spatial pyramid pooling for more accurate tumor target segmentation for rectal cancer radiotherapy.

    • Kuo Men, Pamela Boimel, James Janopaul-Naylor, Haoyu Zhong, Mi Huang, Huaizhi Geng, Chingyun Cheng, Yong Fan, John P Plastaras, Edgar Ben-Josef, and Ying Xiao.
    • Author to whom any correspondence should be addressed.
    • Phys Med Biol. 2018 Sep 17; 63 (18): 185016.

    AbstractConvolutional neural networks (CNNs) have become the state-of-the-art method for medical segmentation. However, repeated pooling and striding operations reduce the feature resolution, causing loss of detailed information. Additionally, tumors of different patients are of different sizes. Thus, small tumors may be ignored while big tumors may exceed the receptive fields of convolutions. The purpose of this study is to further improve the segmentation accuracy using a novel CNN (named CAC-SPP) with cascaded atrous convolution (CAC) and a spatial pyramid pooling (SPP) module. This work is the first attempt at applying SPP for segmentation in radiotherapy. We improved the network based on ResNet-101 yielding accuracy gains from a greatly increased depth. We added CAC to extract a high-resolution feature map while maintaining large receptive fields. We also adopted a parallel SPP module with different atrous rates to capture the multi-scale features. The performance was compared with the widely adopted U-Net and ResNet-101 with independent segmentation of rectal tumors for two image sets, separately: (1) 70 T2-weighted MR images and (2) 100 planning CT images. The results show that the proposed CAC-SPP outperformed the U-Net and ResNet-101 for both image sets. The Dice similarity coefficient values of CAC-SPP were 0.78  ±  0.08 and 0.85  ±  0.03, respectively, which were higher than those of U-Net (0.70  ±  0.11 and 0.82  ±  0.04) and ResNet-101 (0.76  ±  0.10 and 0.84  ±  0.03). The segmentation speed of CAC-SPP was comparable with ResNet-101, but about 36% faster than U-Net. In conclusion, the proposed CAC-SPP, which could extract high-resolution features with large receptive fields and capture multi-scale context yields, improves the accuracy of segmentation performance for rectal tumors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.