• Bmc Med · Jan 2021

    Meta Analysis

    A heart failure phenotype stratified model for predicting 1-year mortality in patients admitted with acute heart failure: results from an individual participant data meta-analysis of four prospective European cohorts.

    • Yuntao Chen, Adriaan A Voors, Tiny Jaarsma, Chim C Lang, Iziah E Sama, K Martijn Akkerhuis, Eric Boersma, Hans L Hillege, and Douwe Postmus.
    • Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands. y.chen@umcg.nl.
    • Bmc Med. 2021 Jan 27; 19 (1): 21.

    BackgroundPrognostic models developed in general cohorts with a mixture of heart failure (HF) phenotypes, though more widely applicable, are also likely to yield larger prediction errors in settings where the HF phenotypes have substantially different baseline mortality rates or different predictor-outcome associations. This study sought to use individual participant data meta-analysis to develop an HF phenotype stratified model for predicting 1-year mortality in patients admitted with acute HF.MethodsFour prospective European cohorts were used to develop an HF phenotype stratified model. Cox model with two rounds of backward elimination was used to derive the prognostic index. Weibull model was used to obtain the baseline hazard functions. The internal-external cross-validation (IECV) approach was used to evaluate the generalizability of the developed model in terms of discrimination and calibration.Results3577 acute HF patients were included, of which 2368 were classified as having HF with reduced ejection fraction (EF) (HFrEF; EF < 40%), 588 as having HF with midrange EF (HFmrEF; EF 40-49%), and 621 as having HF with preserved EF (HFpEF; EF ≥ 50%). A total of 11 readily available variables built up the prognostic index. For four of these predictor variables, namely systolic blood pressure, serum creatinine, myocardial infarction, and diabetes, the effect differed across the three HF phenotypes. With a weighted IECV-adjusted AUC of 0.79 (0.74-0.83) for HFrEF, 0.74 (0.70-0.79) for HFmrEF, and 0.74 (0.71-0.77) for HFpEF, the model showed excellent discrimination. Moreover, there was a good agreement between the average observed and predicted 1-year mortality risks, especially after recalibration of the baseline mortality risks.ConclusionsOur HF phenotype stratified model showed excellent generalizability across four European cohorts and may provide a useful tool in HF phenotype-specific clinical decision-making.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.