• Comput Math Methods Med · Jan 2013

    Smart spotting of pulmonary TB cavities using CT images.

    • V Ezhil Swanly, L Selvam, P Mohan Kumar, J Arokia Renjith, M Arunachalam, and K L Shunmuganathan.
    • Computer Science and Engineering, Jeppiaar Engineering College, Rajiv Gandhi Salai, Chennai 119, India.
    • Comput Math Methods Med. 2013 Jan 1; 2013: 864854.

    AbstractOne third of the world's population is thought to have been infected with mycobacterium tuberculosis (TB) with new infection occurring at a rate of about one per second. TB typically attacks the lungs. Indication of cavities in upper lobes of lungs shows the high infection. Traditionally, it has been detected manually by physicians. But the automatic technique proposed in this paper focuses on accurate detection of disease by computed tomography (CT) using computer-aided detection (CAD) system. The various steps of the detection process include the following: (i) image preprocessing, which is done by techniques such as resizing, masking, and Gaussian smoothening, (ii) image egmentation that is implemented by using mean-shift model and gradient vector flow (GVF) model, (iii) feature extraction that can be achieved by Gradient inverse coefficient of variation and circularity measure, and (iv) classification using Bayesian classifier. Experimental results show that its perfection of detecting cavities is very accurate in low false positive rate (FPR).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.