• Neuroendocrinology · Jan 2017

    Meta Analysis

    Examining the Causal Role of Leptin in Alzheimer Disease: A Mendelian Randomization Study.

    • Matthew L Romo and C Mary Schooling.
    • Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA.
    • Neuroendocrinology. 2017 Jan 1; 105 (2): 182-188.

    BackgroundObservational evidence regarding the role of leptin in Alzheimer disease (AD) is conflicting. We sought to determine the causal role of circulating leptin and soluble plasma leptin receptor (sOB-R) levels in AD using a separate-sample Mendelian randomization study.MethodsSingle nucleotide polymorphisms (SNPs) independently and solely predictive of log-transformed leptin (rs10487505 [LEP], rs780093 [GCKR], rs900400 [CCNL1], rs6071166 [SLC32A1], and rs6738627 [COBLL1]) and of sOB-R (rs1137101 [LEPR], rs2767485 [LEPR], and rs1751492 [LEPR]) levels (ng/mL) were obtained from 2 previously reported genome-wide association studies. We obtained associations of leptin and sOB-R levels with AD using inverse variance weighting with fixed effects by combining Wald estimates for each SNP. Sensitivity analyses included using weighted median and MR-Egger methods and repeating the analyses using only SNPs of genome-wide significance.ResultsUsing inverse variance weighting, genetically predicted circulating leptin levels were not associated with AD, albeit with wide confidence intervals (CIs): odds ratio (OR) 0.99 per log-transformed ng/mL; 95% CI 0.55-1.78. Similarly, the association of sOB-R with AD was null using inverse variance weighting (OR 1.08 per log-transformed ng/mL; 95% CI 0.83-1.41). Results from our sensitivity analyses confirmed our findings.ConclusionsIn this first Mendelian randomization study estimating the causal effect of leptin on AD, we did not find an effect of genetically predicted circulating leptin and sOB-R levels on AD. As such, this study suggests that leptin is unlikely to be a major contributor to AD, although the wide CIs preclude a definitive assessment.© 2017 S. Karger AG, Basel.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.