• J Clin Monit Comput · Feb 2014

    A pilot study quantifying the shape of tidal breathing waveforms using centroids in health and COPD.

    • E M Williams, T Powell, M Eriksen, P Neill, and R Colasanti.
    • Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK, Mark.Williams@southwales.ac.uk.
    • J Clin Monit Comput. 2014 Feb 1; 28 (1): 67-74.

    AbstractDuring resting tidal breathing the shape of the expiratory airflow waveform differs with age and respiratory disease. While most studies quantifying these changes report time or volume specific metrics, few have concentrated on waveform shape or area parameters. The aim of this study was to derive and compare the centroid co-ordinates (the geometric centre) of inspiratory and expiratory flow-time and flow-volume waveforms collected from participants with or without COPD. The study does not aim to test the diagnostic potential of these metrics as an age matched control group would be required. Twenty-four participants with COPD and thirteen healthy participants who underwent spirometry had their resting tidal breathing recorded. The flow-time data was analysed using a Monte Carlo simulation to derive the inspiratory and expiratory flow-time and flow-volume centroid for each breath. A comparison of airflow waveforms show that in COPD, the breathing rate is faster (17 ± 4 vs 14 ± 3 min(-1)) and the time to reach peak expiratory flow shorter (0.6 ± 0.2 and 1.0 ± 0.4 s). The expiratory flow-time and flow-volume centroid is left-shifted with the increasing asymmetry of the expired airflow pattern induced by airway obstruction. This study shows that the degree of skew in expiratory airflow waveforms can be quantified using centroids.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.