• Heart · Jan 2012

    Review

    Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms.

    • Georgina M Ellison, Cheryl D Waring, Carla Vicinanza, and Daniele Torella.
    • Liverpool John Moores University, The Stem Cell and Regenerative Biology Unit (BioStem), Research Institute for Sport and Exercise Sciences, Room 1.41, Tom Reilly Building, Byrom Street, Liverpool L3 3AF, UK. g.m.ellison@ljmu.ac.uk
    • Heart. 2012 Jan 1; 98 (1): 5-10.

    AbstractExercise training fosters the health and performance of the cardiovascular system, and represents nowadays a powerful tool for cardiovascular therapy. Exercise exerts its beneficial effects through reducing cardiovascular risk factors, and directly affecting the cellular and molecular remodelling of the heart. Traditionally, moderate endurance exercise training has been viewed to determine a balanced and revertible physiological growth, through cardiomyocyte hypertrophy accompanied by appropriate neoangiogenesis (the Athlete's Heart). These cellular adaptations are due to the activation of signalling pathways and in particular, the IGF-1/IGF-1R/Akt axis appears to have a major role. Recently, it has been shown that physical exercise determines cardiac growth also through new cardiomyocyte formation. Accordingly, burgeoning evidence indicates that exercise training activates circulating, as well as resident tissue-specific cardiac, stem/progenitor cells. Dissecting the mechanisms for stem/progenitor cell activation with exercise will be instrumental to devise new effective therapies, encompassing myocardial regeneration for a large spectrum of cardiovascular diseases.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…