-
Comparative Study
Relation of pulmonary vein to mitral flow velocities by transesophageal Doppler echocardiography. Effect of different loading conditions.
- R A Nishimura, M D Abel, L K Hatle, and A J Tajik.
- Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905.
- Circulation. 1990 May 1; 81 (5): 1488-97.
AbstractIt has previously been demonstrated that predictable changes occur in mitral flow velocities under different loading conditions. The purpose of this study was to relate changes in pulmonary venous and mitral flow velocities during different loading conditions as assessed by transesophageal echocardiography in the operating room. Nineteen patients had measurements of hemodynamics, that is, mitral and pulmonary vein flow velocities during the control situation, a decrease in preload by administration of nitroglycerin, an increase in preload by administration of fluids, and an increase in afterload by infusion of phenylephrine. There was a direct correlation between the changes in the mitral E velocity and the early peak diastolic velocity in the pulmonary vein curves (r = 0.61) as well as a direct correlation between the deceleration time of the mitral and pulmonary venous flow velocities in early diastole (r = 0.84). This indicates that diastolic flow velocity in the pulmonary vein is determined by the same factors that influence the mitral flow velocity curves. A decrease in preload caused a significant reduction in the initial E velocity and prolongation of deceleration time, and an increase in preload caused an increase in E velocity and shortening of deceleration time. An increase in afterload produced a variable effect on the initial E velocity and deceleration time and was dependent on the left ventricular filling pressure. The change in systolic forward flow velocity in the pulmonary vein was directly proportional to the change in cardiac output (r = 0.60). The pulmonary capillary wedge pressure correlated best with the flow velocity reversal in the pulmonary vein at atrial contraction (r = 0.81). Use of pulmonary vein velocities in conjunction with mitral flow velocities can help in understanding left ventricular filling.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.