• JACC Cardiovasc Imaging · Jun 2019

    Multicenter Study Comparative Study

    Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics.

    • Joo Myung Lee, Gilwoo Choi, Bon-Kwon Koo, Doyeon Hwang, Jonghanne Park, Jinlong Zhang, Kyung-Jin Kim, Yaliang Tong, Hyun Jin Kim, Leo Grady, Joon-Hyung Doh, Chang-Wook Nam, Eun-Seok Shin, Young-Seok Cho, Su-Yeon Choi, Eun Ju Chun, Jin-Ho Choi, Bjarne L Nørgaard, Evald H Christiansen, Koen Niemen, Hiromasa Otake, Martin Penicka, Bernard de Bruyne, Takashi Kubo, Takashi Akasaka, Jagat Narula, Pamela S Douglas, Charles A Taylor, and Hyo-Soo Kim.
    • Department of Internal Medicine and Cardiovascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
    • JACC Cardiovasc Imaging. 2019 Jun 1; 12 (6): 1032-1043.

    ObjectivesThe authors investigated the utility of noninvasive hemodynamic assessment in the identification of high-risk plaques that caused subsequent acute coronary syndrome (ACS).BackgroundACS is a critical event that impacts the prognosis of patients with coronary artery disease. However, the role of hemodynamic factors in the development of ACS is not well-known.MethodsSeventy-two patients with clearly documented ACS and available coronary computed tomographic angiography (CTA) acquired between 1 month and 2 years before the development of ACS were included. In 66 culprit and 150 nonculprit lesions as a case-control design, the presence of adverse plaque characteristics (APC) was assessed and hemodynamic parameters (fractional flow reserve derived by coronary computed tomographic angiography [FFRCT], change in FFRCT across the lesion [△FFRCT], wall shear stress [WSS], and axial plaque stress) were analyzed using computational fluid dynamics. The best cut-off values for FFRCT, △FFRCT, WSS, and axial plaque stress were used to define the presence of adverse hemodynamic characteristics (AHC). The incremental discriminant and reclassification abilities for ACS prediction were compared among 3 models (model 1: percent diameter stenosis [%DS] and lesion length, model 2: model 1 + APC, and model 3: model 2 + AHC).ResultsThe culprit lesions showed higher %DS (55.5 ± 15.4% vs. 43.1 ± 15.0%; p < 0.001) and higher prevalence of APC (80.3% vs. 42.0%; p < 0.001) than nonculprit lesions. Regarding hemodynamic parameters, culprit lesions showed lower FFRCT and higher △FFRCT, WSS, and axial plaque stress than nonculprit lesions (all p values <0.01). Among the 3 models, model 3, which included hemodynamic parameters, showed the highest c-index, and better discrimination (concordance statistic [c-index] 0.789 vs. 0.747; p = 0.014) and reclassification abilities (category-free net reclassification index 0.287; p = 0.047; relative integrated discrimination improvement 0.368; p < 0.001) than model 2. Lesions with both APC and AHC showed significantly higher risk of the culprit for subsequent ACS than those with no APC/AHC (hazard ratio: 11.75; 95% confidence interval: 2.85 to 48.51; p = 0.001) and with either APC or AHC (hazard ratio: 3.22; 95% confidence interval: 1.86 to 5.55; p < 0.001).ConclusionsNoninvasive hemodynamic assessment enhanced the identification of high-risk plaques that subsequently caused ACS. The integration of noninvasive hemodynamic assessments may improve the identification of culprit lesions for future ACS. (Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coronary CT Angiography and Computational Fluid Dynamic [EMERALD]; NCT02374775).Copyright © 2019 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.